US009081594B1

a2 United States Patent 10) Patent No.: US 9,081,594 B1
Labonte et al. (45) Date of Patent: Jul. 14, 2015
(54) MANAGING DATA STORAGE SYSTEMS IN 2004/0128670 Al* 7/2004 Robinsonetal. ... 718/1
VIRTUAL SYSTEMS BASED ON STORAGE 2006/0080682 Al: 4/2006 Anwaretal. 719/331
AWARENESS 2006/0126468 Al* 6/2006 McGovern et al. 369/53.1
2008/0040484 Al* 2/2008 Yardley 709/227
2011/0004735 Al* 1/2011 Arroyoetal. 711/162
(75) Inventors: Kevin S. Labonte, Upton, MA (US); 2011/0145818 Al* 6/2011 Vemurietal. 718/1
Peter Shajenko, Jr., Merrimack, NH
(US); Deene A. Dafoe, NOITthI‘Ollgh, OTHER PUBLICATIONS
MA (US); Yuanyang Wu, Shanghai
(CN); Ashish Kamra, Karnataka (IN) 3PAR Utility Storage with VMware vSphere, Aug. 2011, Hewlett
. . . Packard Development Company, pp. 7-8.*
(73) Assignee: EMC Corporation, Hopkinton, MA Cormac Hogan, vSphere 5.0 Storage Features Part 10—VASA—
(Us) vSphere Storage APIs—Storage Awareness, Aug. 19,2011, VMWare
N vSphere blogs, pp. 1-5.*
(*) Notice: Subject. to any dlsclalmer,. the term of this Schulz, Greg, Why VASA is important to have in your VMware
patent is extended or adjusted under 35 CASA, Sep. 20, 2011, The Virtualization Practice, pp. 1-4.*
U.S.C. 154(b) by 344 days.
* cited by examiner
(21) Appl. No.: 13/249,302
(22) Filed: Sep. 30, 2011 Primary Examiner — Aimee Li
(51) Tnt.CL Assistant Examiner — Ke@eth Tsang. .
GO6F 12/00 (200601) (74) AZZo;jney, Ag@l’ll, or Firm — Deeplka Bhayana, Jason A.
GOGF 9/445 (2006.01) Reyes; Krishnendu Gupta
GO6F 12/10 (2006.01)
GO6F 9/455 (2006.01)
GOGF 3/06 (2006.01) (7 ABSTRACT
(52) US.Cl A method is used in managing data storage in virtual systems.
CPC e (?00163F Os; /) 445 g é]«gz.?(}éz;) 22)2)1G3081;) 1 é/olg;; A data storage system is queried through a universal frame-
e o k module of the data st tem. The uni 11 -
3/0689 (2013.01); GOGF 9/45558 (2013.01) oo mocte0r e cala siorage sysietn. Lhe tiversa, Hatbe
. . . work module includes a first set of interfaces associated with
(58) Field of Classification Search a format used by a virtual system to communicate with the
CPC i GOG6F 11/3466; GOGF 12/0253 data storage system. Information associated with the data
USPC T T RRRE 711/6 storage is retrieved from a platform speciﬁc module of the
See application file for complete search history. data storage system. The platform specific module provides
(56) References Cited the information to the universal framework module. The plat-

U.S. PATENT DOCUMENTS

form specific module includes a second set of interfaces based
on a type of the data storage system.

7,587,399 B2* 9/2009 Kilianetal.ocoeevveenrnn. 1/1
7,950,025 B1* 5/2011 McCannetal. ... 719/328 20 Claims, 22 Drawing Sheets
350 352 354
1 1 $
VIRTUAL VIRTUAL |..... VIRTUAL
SERVER-1 SERVER-2 SERVERN
ﬁ @]3[300
i
3§2 ARRAY SUBSYSTEM
as4~| vasaprotocoLADAPTER |
"
E'""""'R/'A'SKF?F@%BER """""
366+ VASA COMMON PROVIDER

!
368 VASAPROVIDER BLOCK ADAPTER |

NOTIFICATIONS

STORAGE ALERT
378“{ PROVIDER | 3BH PROVIDER |

U.S. Patent Jul. 14, 2015 Sheet 1 of 22 US 9,081,594 B1

10~ 12 16
/ /

20
DATA STORAGE MANAGEMENT
SYSTEM SYSTEM

18
/
14a 14b 14n
/ / V4
HOST-1 HOST-2 e HOST-n

FIG. 1

US 9,081,594 B1

Sheet 2 of 22

Jul. 14, 2015

U.S. Patent

¢ Ol

vl
Y3IAYIS/LSOH

| Y
vaH || vaH

0§l
Y

17}
W3LSAS ONILYHIdO

gel
SININOJNOD HO/ANY
SLNdLNO ‘S1NdNI ¥3FHLO

o

sl

—E0¢)
d ._._.w_on_

£)
ININOdWOD
INJFWNIOVNVYIN JOVHOLS

Tl [
(S)301A3a

(S)40SS3D0Hd

¥3LNdWOD 3OVd01S

Byl
d3Ad3S
/LSOH

1
1
1
1
1
1
pomru\"
1
1
1
1
1
1
1
1
1
1
1
1

i
vaH

5 140d
8 140d

97}
W3LSAS ONILYH3dO

el
SININOJWOO HO/ANY
SLNdLNO ‘SLNdNI¥IHLO

" _
202! oLl

HOLIMS

"
v 140d

9¢el
ININOdNOD
INIWIDOVNVYIN JOVHOLS

7l 0l

(9)40ss3o0oud| | (§)301A3a
Y31NdNOD

JOVHO1S

o
¢0}

US 9,081,594 B1

Sheet 3 of 22

Jul. 14, 2015

U.S. Patent

92e0e

4¢€0¢

J1€0¢

32€02

dceoc

d1£0¢

aeele

SAX4

Y1€0¢

¢ Ol

10
d3AY3S

dc10¢

¢e0e
—0¢0¢

2 | B

\

veee

002
YHOMLIN
vadY 3OVHOLS

JANTOA

ANIHOVIA
TVNLHIA

m —

2H0Z
W3LSAS NOILYZITYNLHIA

o

\
g1¢0c

{
v120¢

U.S. Patent Jul. 14, 2015 Sheet 4 of 22 US 9,081,594 B1

900\‘ .
VM 950B
VM 950A
VM 950
APP GUESTS { e
o QPG
OPERATING R Y
SYSTEM GUEST 951 N
VIRTUAL \ 1
SYSTEM 952 —
A
:rVIRTUALIZATION LAYER IRy
1
1 1
! VMM 910A :
1 — 1
| VMM 910 M
1 _ A 1
: | |
1 A 1
1 1
' |
e , SO I SR S A R
APPS
930 CP CP
SYSTEM
SOFTWARE | |
A 4 Yy
HOST OS DRIVERs
920 921
A
\ 4 \ \ 4 Y
SYSTEM HARDWARE
920

FIG. 4

U.S. Patent Jul. 14, 2015 Sheet 5 of 22 US 9,081,594 B1

1000~ -
VM 9508

VM 950A

R APP GUESTS{
_—

OPERATING Y
SYSTEM GUEST 951 N

VIRTUAL v
SYSTEM 952 _—

VIRTUALIZATION LAYER ;, o*

1092 VMM 1010B | J
VMM 1010A -

VMM 1010 |

KERNEL 1090 ‘
A
O OO
SYSTEM HARDWARE
920

FIG. 5

US 9,081,594 B1

Sheet 6 of 22

Jul. 14, 2015

U.S. Patent

€¢9

9 9l
1 U
p— 619~ aa ANIHOVIN TVNLYIA 719
919 M :
029~ . N :
B0Z9\ = NN INIHOYIN TYNLYIA [~—O7}9
Mo | N T
S— Y INIHOVIN TYNLEIA [—— ar19
9819 16 S
— Y
N . ANIHOYIN TYNLYIA ——Bpio
B89~ \:9 A e | 1O ~—
—— ~ 219
ININNOYIANT 3OVHOLS vIvd
019

U.S. Patent

Jul. 14, 2015

Sheet 7 of 22 US 9,081,594 B1

METADATA ON LUN 1, RAW DISK AT LUN 2

VIRTUAL MACHINE

§
614a

618a

e\
LUN1

618b

LUN2

FIG. 7

US 9,081,594 B1

Sheet 8 of 22

Jul. 14, 2015

U.S. Patent

194
JOVHOLS

/ N 474

100d
1Od

cle
r100d
194

J \

BN 77777707 R

. 100d
6£7 O

g YW,

8 9ld

e
14

JNNTOA -«

JOVHOLS

JNNTOA
JOVdOLS

o
—

JLVLS A -
/0530 MH-
s
\ a

JNNTOA
%

JOVHOLS

\ze
JWNTOA
JOVHOLS

067

MHOMLAN VIV IOVHOLS
INILSAS IOVHOLS

S
~N~—
\ﬁl;\

01474
ANIHOVI TYNLAIA

. acie
IANIHOYIN TYNLYIA

acie
W3LSAS NOILVZITVNLHIA

<
(]
N

7, aele

ANIHOVIA TYNLHIA J<¢------

vele
ANIHOVIN TYNLAIA

viie
W3LSAS NOILYZITYNLYIA

d3A0TVS

JOVHOLS NOISIAOYHd
[ALV1NIOVS

N

102

US 9,081,594 B1

Sheet 9 of 22

Jul. 14, 2015

U.S. Patent

d3dINOYd

w VSVA

= \g0¢
] N AVHYY

\90¢

d3dINOdd

..... g _Hm YSVA

= 08
Ol | aveny

\Z0¢
SAVYYY FOVHOLS

)
00€

6 9Ol
NOILYWHOANI JOVYOLS 1S3NDIY
... davosvsva
(SINS) 321 AY3S
Jwbw 8le~| _ ONIMOLINOW
IERERIERS
Jwbw aY
E N XS3 =] y3AYIS ¥IINION
\91¢ owm 1
m" ZXS3
NVS Crie N3O FHTHASA
A .ddV dOIMS3d.
E | XS3 |
= [NOILY LSYHHOM LNIWIDVNYI
\zig ¢
HILSNTO LSOH XS3 778
3 «/
0Lg 0c

US 9,081,594 B1

Sheet 10 of 22

Jul. 14, 2015

U.S. Patent

9ge
§

N-43IAH3S
VNLLIA

NOISS3S

d3dINOYd
YSYA

100010dd
VSVA

N-W3LSAS
JOVHOLS V1vd

IIIIAIIIL
LeE

_
_
_
_
_
_
_
_
_
43.1dvav "
_
_
_
_
_
_
_

0l "Old
Gee
§

¢-43aNd3S
TVNLHIA

NOISS3S

d3dINOHd
VSYA

1000108d
VSVA

¢"W3LSAS
JOVH01S v1vd

Illlﬂllll—
9z¢

_
_

_

_

_

_

_

_

_
d31dvav "
_

_

_

_

_

_

_

vee
§

=ENER)
TVNLHIA

NOISS3S

F———¥====

¥3AINOYd
YSYA
)

€€

1000104d
VSYA

)
8z¢

L-W3LSAS
JOVHO1S Y1vd

IIIIﬂIIIL
Gee

| _

I
| |
— _
_ I
_ I
I I

I
| |
I d31dvayv _
| |
| !

I
| |
— _
| !
| _

>

NOILYINHO4SNYYHL
13AdON

D €

NOILVINHO4SNYYHL

—
Q
O
(@)
—
o
o
(a

U.S. Patent Jul. 14, 2015 Sheet 11 of 22 US 9,081,594 B1

350 352 354
§ § §
VIRTUAL VIRTUAL |.....| VIRTUAL
SERVER-1 SERVER-2 SERVER-
{ i e
(
3@2 ARRAY SUBSYSTEM

STORAGE ALERT
3781 PROVIDER 380~ PROVIDER

1
1 1
1 1
1 1
1 1
: :
A Vot
! | VASA PROVIDER | !
I 1 1 "
i 366 VASA COMMON PROVIDER : :
! : : !
| 368 VASAPROVIDER BLOCK ADAPTER | ' i
o F
A | 4 S |
! UQUERIES ﬁNOTIFICATIONS !
: :
1 1
1 1
1 1
1 1

380~ DISK ARRAY

FIG. 11

US 9,081,594 B1

Sheet 12 of 22

Jul. 14, 2015

U.S. Patent

‘3714 ANV Y9079 ¥O4 ¢l Ol
71 S¥3Ldvay INF¥344IQ FHL FLON [
| N "
1 1
1 1
1 1
1 1
| /| | /|
“ “
1 1
“ “
¥3Lldvay ¥3Ldvay ¥3Ldvay
314 W3n %0018 N3N %2078 N3N
[F «Advua [«Auvyam [«Advya
106 605 SIS
¥3AIAOYd YSVA ¥3AIAOYd YSYA ¥3AINOYd YSYA
908 808 “0L§
¥d YSYA ¥d YSVA ¥d YSYA
oS <505 €05
NOD3 Woo3 NOD3
NOLLYLS TO4LNOD WYHIND g dS WYHIND ¥ dS WYHIND
)))
208 10 008

US 9,081,594 B1

Sheet 13 of 22

Jul. 14, 2015

YIAINOY YSYA
[IX3INOD 39VSN NOISSTS | A0T ILEAWAVIY| |- |
\
T = SSYTOALTILN
=N = WO LIMM/AYIY NOLLOYSNYHL Y avdo [~
= QVIYHL LNOJNIL NOISSIS FHL SNd SISSYTO |
e JOIAY3S FHL NI Q3 TIVO SGOHLIN VSYA TIV |
HITANVH INIAT \\wém_%gé = w NO OS aNY
—— ! ——o 4|~ avIuHI
| “ = L \ m TN SNVL
1
=T e SINYTY aay
" =E / M3LNIOd ¥3LdVY Ay T
AR 3030 _ 3avav4 ¥3Ldvavy 4/>Q | L7 Qv3HL
2 ST IONVH Wav TV [HOONIN sfewyland o0 Jop— i AW
g | W [(FWLTvo1svT | = owi] |leoisetarepdn \\\\m
w 1X31INOD zo_wmmm\. sule|y|jod - om/m_/wmxw
= e, \\\
= oLl [eyse-ab I g SIWHYTY 139
> Wi | |[edseTepepdn O
S “Ma X8juoHUoIssegdny oo | L
> S|suoissegInQswl | _—1 = \\\ SNYY
m L M SBpIRAUL \ %Eooco_wwmmo_e_oo_u\\ \m#\\mZoz_Emo YSVA
— (—Tossesewpert | HILSIOTANN
! -+ OO SNOISSIS | [\\Jﬂﬂ\cm_.m\% %\&\\\\\ = /43181934
____we DO SINAMO |5 XOI00u0Issosamiol S L ~avaant
SdvI pas IX8JUODUOISSAS)R8ID AL SNYYL
YIDVNVIN LXTLNOD NOISS3S J0IAd3S YSVA IX3LINOD 13S

U.S. Patent

US 9,081,594 B1

Sheet 14 of 22

Jul. 14, 2015

U.S. Patent

vl Old
_ _ _ | | (dA woly)
_ _ _ _ N
_ [[[}: ||||| -
_ I | OJU|JSPIADI JIOPUSABSER
) | | pilepoyiopusA; | M
“ B PIIoPONIOPUSA: ()SPIISPONOPUS AR
I TTTTTTTTTTYTTTTTTTTTTTTT i >
_ _ _
I (IX8UODUOISSES) I I
“ PEILOQUOISSSSIEPIEAU! ™= y511i05U01SS8S” (BULSJXEJU0)UOISSeSAN{00]
_ _ [i
[_ H_mf g
“ ! (Bulns)ereoyeOppE
| | [le
I I (Buwys ‘Buins)eresnuayine H
_ _ [
| | | !
I I ues|ooq: (Buwis)aiepijea
_ _ _
“ “ “ “ “(Bums)aisibal
" " " " S1eoUIBOYSYABISIBoY _
| | | | | Jaydepy|00010.d
13)depyI0pUSACAI 13|pueH SOIBSYSYA
«BOBLIBIUI JobeueIxaIU0) 189 LI EINTE «o0BpajUI» JM\

(©10LINAD JUBI|0 J8)SIDaY psS

US 9,081,594 B1

Sheet 15 of 22

Jul. 14, 2015

U.S. Patent

J8ITX8JU0UOISSagIEaID)

1ol

-

OJU[ISPIACIJIOPUSABSEA!

.

ulis)pjuoIssagies |

—
J— -

- ———

OJUJJBPIAOIGIOPUSABSEA

oxﬁcoommmm_::xgcoo%mmzﬁmp_?

 (xejuonabesn)xajuonabesnaiepien

—_d

H

| (dA woy)

|
I
|
|
I
|
-

I
" OJulJapIrCIgIOpUBABSEA: (1XBIU0D8beSN wmcswzxmzooam _
|

IXOIU0QUOISSOS: sx&cmo%mw: ‘BuLnS) IXaIUOHUOISSESIBSID

181depyIopuspdA|
«OoBJBIUI>>

IX8JUODUOISSES

Jabeugpixeiuon

| Jaydepy|0o0j0.d
S0IMBSYSYA T
«80RLBIUI ~

(UOISSBS dA MBU LBIS S

US 9,081,594 B1

Sheet 16 of 22

Jul. 14, 2015

U.S. Patent

91 'Old

I

i

(1X8)UOUOISSES JIXBIUONUOISSAS PPE

(1X8)U0DHUOISSBS)J0}98||0DUOISSOSLE)S

@m_vcm_._zwm_rm_ccm_._zm>m=mw_ E

I8|PUBH)USAZUOISSOS

| 3]sy

J0198||0QU0ISS8S|
«adBJIoul»

3%_ccm_._Eh_m_<rm_ucm_._§m_<6w_ m

J9|PUBHWIE|\YUOISSES

«8)eaioy

-t
%

«3]e3ld»

IX8JUODUOISSOS

JaBeuepyixeiuo)

(_ X3u0QUOISSSaleal) ps

US 9,081,594 B1

Sheet 17 of 22

Jul. 14, 2015

U.S. Patent

1 "9Old

||||||||||||||||||||| Sy Sy

[lAenyabelog:
I

A

feiyabelio)s: ([JBus 9xsjuonuoissag)sAenyAianb

IX8JUODUOISSSS:

IX81UOHUOISSOS: aq_:wzx&cooco_wmowa3_8_

(dA :“Qt

[[Relyabelolg:

Aellyabein)s: eoc_:wu ‘pjuoissag)shesnyhiony |
| |

|dwiisidepyo0igNINdA

Jabeue\xajuo)

Jaydepy|00010.d
_

SVIMBSYSYA
«3JeLIBIUI»

!

(Aanb 8)noex3 ps

US 9,081,594 B1

Sheet 18 of 22

Jul. 14, 2015

U.S. Patent

wJepyebelns: (Buoj .cao_mmomvme_m_ﬁmo I
| 1

8l Old
, , , : (dA woux)
_ I _ _ 1
_ 1 _ 1 o)
_ L o | [ueysbess:
_ [w.eyebeios:
T fluneiyebeioig | |
- _
[Jwiepyebe.os: (Buoj)swieyieb “
_ -t _
_ I [Jw.iepyabelors: (buoj)swiepy|jod
_ I
_ I
_ I
_ I Iy
| | IXAJUODUOISSOS:
_ I
“ “ X8JuOHUOISSag: (BuLys)IXajuouoISsagdny oo
_ _ .
_ I
_ I
_ I

_ J19)depy|02010.d
_ I
90IMBSYSYA a
JO|PUBHWLIBYUOISSOS IXAUODUOISSOS Jabeuepxajuo) «BoBLBUIN Jk

(Suwleyeo ps

US 9,081,594 B1

Sheet 19 of 22

Jul. 14, 2015

U.S. Patent

6l Old

¢er

ploA : (xeyuo)sbesn)xajuo)sbesnaiepl|ea +

[Jbuiss : (Buws ‘x81U0HUOISSOS)IaluapenbiunsNnTABND +

[IPI[OPONIOPUBA %%__80_\,__8:%5@ +

[hoslgouonenossyesep : [|bul]s Jxejuo)uoIsso ton__o“_mz paiepossyAionb +
[[Boeiensbessayy : ()sboeiensbesssiyieh +

00q : (Bums ‘Bus ,mezooco_mmmmvmocméotm%o“_b___Qm%oco_ﬁa__\/_mmoam:c +
[wslgouonenossyesen : Mmmc_:m IXBJUODHUOISSES)J0SS8201JI04SHO P8ISS YAISND +
[hoslgouoneinossyesen : ([|bulls ‘xajuo)uoISSes)A..LIYI0{SI088a001dpalelnossyAienb +
[|Reuyyabelolg : ([Jbulss xeuo)uoissag)shelyiionb +

mz\@._mmm_o#m : [Jouws ‘xayuonuoissag)sNnTebeIoISABND +

[J6us : (odA [Anjugesep ,Hxﬁcooco_wmmwvb__:m:o“_a_uscmc_%gc@mm+

I0A cxﬁcooco_mwmwroﬁom__ooco_wmmm 018 +

[hogsbeioig : ([Jbuns Hxﬁcooco_wwomvmtoao@m_em Janb +

[Jeljoldesen : fvwm__ho_%otoa ng1eb +

PIOA : (IX8JUOUO0ISSES)J0J08||0DUOISSASHE]S +

m_owmmoohn_omsoﬂw buuis Jonooco_mwomv.&owwooen_o@m_swao:c +
Aijqedenabelng : ([Jbums ‘xsjuoquoissag)sanijigedensbeioighianb +
[hoslgouonenossyesep : ([jbuLas JX8)UOQUOISSBS)NN140S l|IqedeppaienossyAianb +
Ul : (8dA] Alugese A ‘xejuonuoIssag)saniugi0loquinNieb +

[dwaydepy20|gNINd/A: 1e1depyIopusp

Y ¥y s
91J0IHO0IGAI:UOWILIOD A a1jo1dANIgedeDy0|gdAlUOWO]dA | - [181depyIOpUSAAI:UOWWOD A
«80BLBIUI «B0BLIBIUI «80BLAIUIY
B|I0IgANIqede) g/ UOWWODJA 10108]|0)UOISSES|-:UOWOD JA
«80BLAIUI» «30BLAUI

(seoepeju| Jajdepyrooig dA SSep

US 9,081,594 B1

Sheet 20 of 22

Jul. 14, 2015

U.S. Patent

0¢ ©Old

Y420

PIOA : (Ixu0D8besn)xajuonobesnaepijea +

[IpliepoI0pusA : ()SpliopopnIopuSAIb +

[]6ojeienabessa|y : ()sbojeienabessojyiab +

|00q : (Bus ¢ BuLys ‘Ix8ju0)UOoISSeg)souewLIopedi04AIgededuonelbiySyghiaib +
[[Aeanyebeio)s : ([]Buys ‘xsjuonuoissag)sAeliyhianb +

[16us : (edA] Amugesen ‘xowonuoisseg)finugioJisynuspenbiunieb +
PIOA : (IXOIU0HUOISSS)I0}09]|0)U0ISSaSdOIS +

[JwaysAga|i4abelnls : ([JBulys ‘xajuonuoissag)swaisiga|iJobeloyghianb +
[Jojyoidesen : ()seuoidpsuoddngiab +

PIOA ; (1XBJUODUOISSBS)I0}D8||0DUCISSBSHES +

[JAungedensbelnls : ([Jbulys ‘Ixeuonuoisseg)saniiqedensbeloighianb +

[16uwss : (Bulis ‘xa0nuoIssag)aunuapenbiunswaisAgs|i4hianb +

Il lioslgouonernoisyesep : ([[Buls ‘xajuonuoisses)walsAga|i4J04A1gedeppaienossyAianh +

ul: (adA L Augesep xe1uo)uoIssag)saniugi0saquinNieb +

|dwsydepywsisASali4ININdA:eldepyiopusp

i i i
alyoidAuiqeded
9|u0JdWaISAGa|I4dAl:UOWWOD A WeISAS8|I{d Al UOLIWODJA J9)depyIOpPUBAALL:UOWLODJA
«30BLIBI» «30BLIBIUIN «80BLI8IUI»
y y
a|oIdAugedendAl::uowwoddA J10]99]|0DU0ISSOG|::UOWWODdA
«30BJIAIUIN «30BJISIUIY

(seoepe)u] J8)dEPY0Ig A SSED

US 9,081,594 B1

Sheet 21 of 22

Jul. 14, 2015

U.S. Patent

{ t

L "Old

90¥ ~ 80% ~ 0Ly~

JojuopAnjigeden JOUUONS JojuopAely
CClY
0 ~J OUUONHOIXBIU0D owv 18SJ01BIIU[DN
 § i —
& U0ISSagH00|g >
JabeueayoeHuoWILIO?) [

<<U0}B[BUIS>> €0 ~{ OHUOWUNTXBIUOT .0 Tpuoissas+ Ly~ UO'SSOSVSVA

oLy

vL¥ ~q pealy] |odyo0|gesen
<<U019|buIS>>

0Ct~q4 Joyuouoneslpu|
¥o0|gesen

S[l0IP0IFYSVAI
<<8JBJolUI>>

Jabeue|uoIssasyo0|g

Wgrdli%

¢

18)depyO0IgINTNIBPINOILYSYA

W44y

o >

8[0idANIqede}0IgY SYAI
<<30BJaUl>>

18)0EPYI0PUSAYSYA
<<30BJoUI>>

(121depy00IgININIOPIN0IYSYA SSEID

US 9,081,594 B1

Sheet 22 of 22

Jul. 14, 2015

U.S. Patent

||||||||||||||||||||| L uoissegpus

=]
c
.o
7]
7]
[<b]
@
=
K]
7]
1753
<b]
[72]
y=]
=
L

| ne_co_mmmwv J0199||00)

[—— TS

e —

}

|
t

UON<>:

(HOMON<198 11~ 53 o eeioisseyooia:

1 (uoissas)uoissagpui

(%10108A)NSBI .mgbz_“.cmﬁ_co_wwmmrva:mc

e

|.h |||||||||||||||| Vp_y ||||||||||||||||| h_. |||||||||||||||||||| i 7
T ()bunojuoppers - +——()BuLioyuopjoslaonels —
I TE TR _ :mmL.m.@g.%.c%.&.mw_wm@v

1ONUOW <> uoisseg | (UOSSaS)MaU- T (UOISSas)UOISSASPPY
0 ! _ _ (U0IS888)I0}3|[0NUOISSOSHESS !
“ ! (UOWILLIOD)JBPIACIJYSYA
1abeuepy saidepy00igNaN q
U0ISSeSY00|g 18pIN0IIBPIACIYSYA »m\

(9[OA09y7 UOISSaS ps

US 9,081,594 B1

1
MANAGING DATA STORAGE SYSTEMS IN
VIRTUAL SYSTEMS BASED ON STORAGE
AWARENESS

BACKGROUND

1. Technical Field

This application relates to managing data storage in virtual
systems.

2. Description of Related Art

Computer systems may include different resources used by
one or more host processors. Resources and processors in a
computer system may be interconnected by one or more
communication connections. These resources may include,
for example, data storage systems, such as the Symmetrix™
or CLARiION™ (also referred to herein as Clariion) family
of data storage systems manufactured by EMC Corporation.
These data storage systems may be coupled to one or more
host processors and provide storage services to each host
processor. An example data storage system may include one
or more data storage devices, such as those of the Symme-
trix™ family, that are connected together and may be used to
provide common data storage for one or more host processors
in a computer system.

In a common implementation, a Storage Area Network
(SAN) is used to connect computing devices with a large
number of storage devices. Management and modeling pro-
grams may be used to manage these complex computing
environments.

Storage Management Initiative Specification (SMI-S), and
Common Information Model (CIM) technologies, are widely
used for managing storage devices and storage environments.
CIM is described further below. The SMI-S is a standard
management interface that allows different classes of hard-
ware and software products to interoperate for monitoring
and controlling resources. For example, the SMI-S permits
storage management systems to identify, classify, monitor,
and control physical and logical resources in a SAN. The
SMI-S is based on CIM, and Web-Based Enterprise Manage-
ment (WBEM) architecture. CIM is a model for describing
management information, and WBEM is an architecture for
using Internet technologies to manage systems and networks.
The SMI-S uses CIM to define objects that represent storage
entities such as Logical Unit Numbers (LUNs), disks, storage
subsystems, switches, and hosts. (In many, but not all cases,
the term “volume” or “logical volume” is interchangeable
with the term “LUN".) CIM also defines the associations that
may or may not exist between these objects, such as a disk
being associated to a storage subsystem because it physically
resides in the storage subsystem.

The CIM objects mentioned above may be managed by a
CIM object manager (CIMOM). A storage management soft-
ware application can use a CIM client to connect to a
CIMOM, to retrieve information about the storage entities
that the CIMOM manages, and also to perform active con-
figuration of the storage entities. Storage management soft-
ware that uses a CIM client may be called a CIM client
application. For example, SMI-S describes how a current
storage LUN is mapped. A CIM server is a CIMOM and a set
of CIM providers. The SMI-S describes several methods for
assigning a LUN from a disk storage system to a host, or for
adding a LUN to a disk storage system.

Virtual processing such as VMware® is another known
areathat offers advantages in data processing, including in the
area of apparent configuration to a user. It would be advance-
ment in both the virtual processing and data storage arts to

10

15

20

25

30

35

40

45

50

55

60

65

2

exploit better the respective individual capabilities for reap-
ing more and better benefits for users in the respective fields.

SUMMARY OF THE INVENTION

A method is used in managing data storage in virtual sys-
tems. A data storage system is queried through a universal
framework module of the data storage system. The universal
framework module includes a first set of interfaces associated
with a format used by a virtual system to communicate with
the data storage system. Information associated with the data
storage is retrieved from a platform specific module of the
data storage system. The platform specific module provides
the information to the universal framework module. The plat-
form specific module includes a second set of interfaces based
on a type of the data storage system.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will
become more apparent from the following detailed descrip-
tion of exemplary embodiments thereof taken in conjunction
with the accompanying drawings in which:

FIG. 1 is an example of an embodiment of a computer
system that may utilize the techniques described herein;

FIGS. 2-13 are block diagrams illustrating in more detail
components that may be used in connection with techniques
described herein;

FIGS. 14-18 are diagrams illustrating an example of
sequence of events that may be used in connection with tech-
niques described herein;

FIGS. 19-21 are class diagrams illustrating in more detail
components that may be used in connection with techniques
described herein; and

FIG. 22 is a diagram illustrating an example of sequence of
events that may be used in connection with techniques
described herein.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

Described below is a technique for use in managing data
storage in virtual systems, which technique may be used to
provide, among other things, querying a data storage system,
through a universal framework module of the data storage
system such that the universal framework module includes a
first set of interfaces associated with a format used by a virtual
system to communicate with the data storage system, and
retrieving from a platform specific module of the data storage
system, information associated with data storage such that the
platform specific module provides the information to the
universal framework module, where the platform specific
module includes a second set of interfaces based on a type of
the data storage system.

A virtualization management system such as VMware®
vSphere™ is a virtualization platform that delivers infrastruc-
ture and application services, and consolidates a set of virtual
machines on a single physical server without impacting or
with minimal impact to performance or throughput of the
physical server. Further, a virtualization management system
includes one or more VMware® ESX Server™, VMware®
vCenter™ Server (formerly known as VMware® Virtual
Center), and vSphere™ client interfaces. Generally, a virtual
system such as vCenter™ Server (also referred to herein as
“virtual server”’) communicates with a data storage system for
retrieving and reporting storage provisioned for the virtual
system by the data storage system.

US 9,081,594 B1

3

Typically, a file system protocol such as VMware® vStor-
age Virtual Machine File System (“VMFS”) allows virtual
machines to access shared storage devices (e.g., Fibre Chanel,
iSCSI) of a data storage system. A set of interfaces such as
VMware® vStorage APIs for Storage Awareness (“VASA™)
enables integration of virtualized systems (e.g. virtual
machines) with a data storage system that provides storage to
virtual machines and supports data protection solutions. Gen-
erally, a VASA interface (also referred to herein as “API” or
“function”) is a proprietary interface by VMware® such that
the VASA interface provides information regarding different
types of data storage systems in a vendor-neutral fashion
which allows users of a virtual machine in a virtualized envi-
ronment to explore the information associated with storage
devices of the different types of data storage systems that are
consumed by the virtualized environment, and manage infra-
structure of the virtualized environment in order to provide
ability to monitor and troubleshoot the storage devices.

Conventionally, a data storage system implements func-
tionality that is required to support VASA APIs used by a
virtual system to communicate with the data storage system.
Further, in such a conventional system, a virtual system may
communicate with different types of data storage systems
such as a file based data storage system, block based data
storage system, and unified file and block based data storage
system. In such a conventional system, different types of data
storage systems process VAS A interfaces differently based on
a storage format used by each different data storage system.
Further, conventionally, a data storage system implements
support for VASA interfaces in a single platform specific
VASA adapter module. Further, even though a data storage
system retrieves information regarding storage entities used
by a virtual system based on a storage format used by the data
storage system, the data storage system must report the infor-
mation to the virtual system in a format that is used by the
virtual system. As a result, in a conventional system, a com-
mon set of functionality that may be used by different data
storage systems for reporting storage used by a virtual
machine is duplicated in each platform specific VASA
adapter module used by each of the different data storage
systems. Therefore, in such a conventional system, an amount
of effort required to test each platform specific VASA adapter
module of each of the different data storage systems is dupli-
cated. Further, in such a conventional system, creating a new
platform specific VASA adapter module for a data storage
system takes a longer time. Additionally, in such a conven-
tional system, debugging issues in a platform specific VASA
adapter module for a data storage system takes a longer time
because a set of functionality that is common to different
types of data storage systems is combined with a set of func-
tionality that is specific to the type data storage system.

By contrast, in at least some implementations in accor-
dance with the current technique as described herein, creating
a universal framework module that includes a set of interfaces
associated with a format (e.g., VASA) used by a virtual sys-
tem for communicating with a data storage system simplifies
management of storage used by the virtual system. Further, in
at least some implementations in accordance with the current
technique as described herein, the universal framework mod-
ule communicates with a platform specific module that
includes a set of interfaces that are specific to the type of the
data storage system.

Therefore, in at least some implementations in accordance
with the current technique as described herein, the use of the
managing data storage in virtual systems can provide one or
more of the following advantages: simplifying the design ofa
platform specific module by removing a common set of func-

10

15

20

25

30

35

40

45

50

55

60

65

4

tionality for supporting VASA interfaces into a universal
framework module, decreasing an amount of overhead
involved in creating a new platform specific module by reus-
ing a universal framework module, decreasing an amount of
time required to test a platform specific module by testing a
set of interfaces that are specific to the type of a data storage
system, and decreasing an amount of overhead involved in
maintaining a platform specific module and a universal
framework module by creating a framework to maintain a
common set of interfaces separate from a set of interfaces that
are specific to the type of a data storage system.

Referring now to FIG. 1, shown is an example of an
embodiment of a computer system that may be used in con-
nection with performing the storage mapping technique
described herein. The computer system 10 includes one or
more data storage systems 12 connected to servers (also
referred to as hosts or host systems) 14a-14# through com-
munication medium 18. At least one of the host systems
14a-14n includes or provides one or more virtual machines as
described below. The system 10 also includes a management
system 16 connected to one or more data storage systems 12
through communication medium 20. In this embodiment of
the computer system 10, the management system 16, and the
N servers or hosts 14a-14n may access the data storage sys-
tems 12, for example, in performing input/output (I/O) opera-
tions, data requests, and other operations. The communica-
tion medium 18 may be any one or more of a variety of
networks or other type of communication connections as
known to those skilled in the art. Each of the communication
mediums 18 and 20 may be a network connection, bus, and/or
other type of data link, such as a hardwire or other connec-
tions known in the art. For example, the communication
medium 18 may be the Internet, an intranet, network or other
wireless or other hardwired connection(s) by which the host
systems 14a-14n may access and communicate with the data
storage systems 12, and may also communicate with other
components (not shown) that may be included in the com-
puter system 10. In at least one embodiment, the communi-
cation medium 20 may be a LAN connection and the com-
munication medium 18 may be an iSCSI or Fibre Channel
connection.

Each of the host systems 14a-14» and the data storage
systems 12 included in the computer system 10 may be con-
nected to the communication medium 18 by any one of a
variety of connections as may be provided and supported in
accordance with the type of communication medium 18.
Similarly, the management system 16 may be connected to
the communication medium 20 by any one of a variety of
connections in accordance with the type of communication
medium 20. The processors included in the host computer
systems 14a-14r and management system 16 may be any one
of'a variety of proprietary or commercially available single or
multi-processor system, such as an Intel-based processor, or
other type of commercially available processor able to sup-
port traffic in accordance with each particular embodiment
and application.

It should be noted that the particular examples of the hard-
ware and software that may be included in the data storage
systems 12 and in at least one of the host computers 14a-14n
are described herein in more detail, and may vary with each
particular embodiment. Each of the host computers 14a-14n,
the management system 16 and data storage systems may all
be located at the same physical site, or, alternatively, may also
be located in different physical locations. In connection with
communication mediums 18 and 20, a variety of different
communication protocols may be used such as SCSI, Fibre
Channel, iISCSI, and the like. Some or all of the connections

US 9,081,594 B1

5

by which the hosts, management system, and data storage
system may be connected to their respective communication
medium may pass through other communication devices,
such as a Connectrix or other switching equipment that may
exist such as a phone line, a repeater, a multiplexer or even a
satellite. In one embodiment, the hosts may communicate
with the data storage systems over an iSCSI or fibre channel
connection and the management system may communicate
with the data storage systems over a separate network con-
nection using TCP/IP. It should be noted that although FIG. 1
illustrates communications between the hosts and data stor-
age systems being over a first connection, and communica-
tions between the management system and the data storage
systems being over a second different connection, an embodi-
ment may also use the same connection. The particular type
and number of connections may vary in accordance with
particulars of each embodiment.

Each of the host computer systems may perform different
types of data operations in accordance with different types of
tasks. In the embodiment of FIG. 1, any one of the host
computers 14a-14n may issue a data request to the data stor-
age systems 12 to perform a data operation. For example, an
application executing on one of the host computers 14a-14n
may perform a read or write operation resulting in one or
more data requests to the data storage systems 12.

The management system 16 may be used in connection
with management of the data storage systems 12. The man-
agement system 16 may include hardware and/or software
components. The management system 16 may include one or
more computer processors connected to one or more 1/O
devices such as, for example, a display or other output device,
and an input device such as, for example, a keyboard, mouse,
and the like. A data storage system manager may, for
example, view information about a current storage volume
configuration on a display device of the management system
16. The manager may also configure a data storage system,
for example, by using management software to define a logi-
cal grouping of logically defined devices, referred to else-
where herein as a storage group (SG), and restrict access to
the logical group.

An embodiment of the data storage systems 12 may
include one or more data storage systems. Each of the data
storage systems may include one or more data storage
devices, such as disks. One or more data storage systems may
be manufactured by one or more different vendors. Each of
the data storage systems included in 12 may be inter-con-
nected (not shown). Additionally, the data storage systems
may also be connected to the host systems through any one or
more communication connections that may vary with each
particular embodiment and device in accordance with the
different protocols used in a particular embodiment. The type
of communication connection used may vary with certain
system parameters and requirements, such as those related to
bandwidth and throughput required in accordance with a rate
of 1/0 requests as may be issued by the host computer sys-
tems, for example, to the data storage systems 12.

It should be noted that each of the data storage systems may
operate stand-alone, or may also included as part of a storage
area network (SAN) that includes, for example, other com-
ponents such as other data storage systems.

Each ofthe data storage systems of element 12 may include
a plurality of disk devices or volumes. The particular data
storage systems and examples as described herein for pur-
poses of illustration should not be construed as a limitation.
Other types of commercially available data storage systems,
as well as processors and hardware controlling access to these
particular devices, may also be included in an embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

6

Servers or host systems, such as 14a-14n, provide data and
access control information through channels to the storage
systems, and the storage systems may also provide data to the
host systems also through the channels. The host systems do
not address the disk drives of the storage systems directly, but
rather access to data may be provided to one or more host
systems from what the host systems view as a plurality of
logical devices or logical volumes. The logical volumes may
or may not correspond to the actual disk drives. For example,
one or more logical volumes may reside on a single physical
disk drive. Data in a single storage system may be accessed by
multiple hosts allowing the hosts to share the data residing
therein. A LUN (logical unit number) may be used to refer to
one of the foregoing logically defined devices or volumes.

Referring now to FIG. 2, shown is an example 100 of
components that may be used in connection with the current
technique described herein. The example 100 may represent
components illustrated in connection of FIG. 1 configured in
a storage area network (SAN). Included in the example 100
are data storage systems 102 and 150, a switch 110, and hosts
or servers 14a and 14b. The switch 110 may be used in
connection with facilitating communications between each of
the hosts 14a and 145 and the data storage systems 102 and
150. Communications between a host and the data storage
system 102 may be defined in terms of a path. Host 14a
communicates with the data storage system 102 over a path
designated as 120c¢. Path 120c¢ is formed by the starting point,
the HBA or host bus adapter 112¢ and the ending point, port
A of the receiving data storage system 102. Host 145 com-
municates with the data storage system 102 over two paths
designated as 120a¢ and 1205. Path 120a is formed by the
starting point, the HBA 1124, and the ending point, port d of
the receiving data storage system 102. Path 1205 is formed by
the starting point, the HBA 1124, and the ending point, portb
of the receiving data storage system 102. It should be noted
that different HBAs from the same or different hosts may also
communicate with the data storage system through a same
port of the data storage system although each path 112a,
1124, and 112¢ use a different port. An embodiment may
represent a path using the WWN (world wide name) of a
host’s HBA and the WWN of a data storage system port
receiving the request. As known to those skilled in the art, a
WWN is a unique number assigned by a recognized naming
authority that identifies a connection or a set of connections to
the network. As also known to those skilled in the art, various
networking technologies that may be used in an embodiment
make use of WWNSs.

Each HBA may include one or more ports although in the
example illustrated, each HBA has only a single port. As
represented with element 152, connections between the hosts
using switch 110 may be made with respect to data storage
system 150. Although only two data storage system are illus-
trated for purposes of simplicity in illustration, each of the
hosts may have connections to other data storage systems in
the SAN. Additionally, each host may be connected to the
data storage systems 102, 150 using other connections,
including direct cabling, than as illustrated in FIG. 2.

The data storage systems 102, 150 are illustrated as each
including one or more storage devices 130, 131, one or more
computer processors 132, 133, an operating system 146, 147,
a storage management component 136, 137, and other inputs,
outputs and/or components 134, 135, which may include all
or some of other logic described below.

An example of an embodiment of the data storage system
102 is the CLARiiON™ data storage system by EMC Cor-
poration which includes two computer processors as repre-
sented by the element 132 although an embodiment may

US 9,081,594 B1

7

include a different number of processors foruse in connection
with the storage mapping technique described herein.

The one or more storage devices 130 may represent one or
more physical devices, such as disk drives, that may be
accessed in logical units (e.g., as LUNs) as described else-
where herein. The operating system 146 may be any one of a
variety of commercially available, proprietary, or other oper-
ating system capable of execution by the one or more com-
puter processors 132 in accordance with the particulars of the
data storage system 102.

As used herein, the term network storage refers generally
to storage systems and storage array technology, including
storage area network (SAN) implementations, network
attached storage (NAS) implementations, and other storage
architectures that provide a level of virtualization for under-
lying physical units of storage. In general, such storage archi-
tectures provide a useful mechanism for sharing storage
resources amongst computational systems. In some cases,
computational systems that share storage resources may be
organized as a coordinated system (e.g., as a cluster or coop-
eratively managed pool of computational resources or virtu-
alization systems). For example, in a failover cluster it may be
desirable to share (or at least failover) virtual machine access
to some storage units. Similarly, in a managed collection of
virtualization systems, it may be desirable to migrate or oth-
erwise transition virtual machine computations from one vir-
tualization system to another. In some cases, at least some
computational systems may operate independently of each
other, e.g., employing independent and exclusive units of
storage allocated from a storage pool (or pools) provided
and/or managed using shared network storage.

Generally, either or both of the underlying computer sys-
tems and storage systems may be organizationally and/or
geographically distributed. For example, some shared storage
(particularly storage for data replication, fault tolerance,
backup and disaster recovery) may reside remotely from a
computational system that uses it. Of course, as will be appre-
ciated by persons of ordinary skill in the art, remoteness of
shared storage is a matter of degree. For example, depending
on the configuration, network storage may reside across the
globe, across the building, across the data center or across the
rack or enclosure.

While embodiments of the current technique, particularly
cluster-organized and/or enterprise scale systems, may build
upon or exploit data distribution, replication and management
features of modern network storage technology, further
embodiments may be used in more modest computational
systems that employ network storage technology. For
example, even a single computer system may employ SAN-
type storage facilities in its storage architecture. Thus, while
some embodiments utilize network storage that can be shared
and while at least some underlying elements thereof may be
remote, persons of ordinary skill in the art will understand
that for at least some embodiments, network storage need not
be shared or remote.

In some embodiments of the current technique, particu-
larly those that use SAN-type storage arrays, block-level I/O
access to virtual machine state data can afford performance
advantages. Similarly, encapsulation and/or isolation tech-
niques may be employed in some encodings of virtual
machine state data to limit access (e.g., by a guest application
or operating system) to underlying data. Accordingly, certain
embodiments can be provided in which non-commingled,
encapsulated representations of virtual machine state are
maintained in distinct storage volumes (or LUNs) of a SAN.
Nonetheless, other embodiments, including those that use
NAS-type or file-system-mediated access mechanisms may

10

15

20

25

30

35

40

45

50

55

60

65

8

still allow a virtualization system to leverage storage system
functionality in support of operations such as virtual machine
migration, movement, cloning, check pointing, rollback and/
or failover using suitable codings of virtual machine state
data.

For concreteness, embodiments are described which are
based on facilities, terminology and operations typical of
certain processor architectures and systems, and based on
terminology typical of certain operating systems, virtualiza-
tion systems, storage systems and network protocols and/or
services. That said, the embodiments are general to a wide
variety of processor and system architectures (including both
single and multi-processor architectures based on any of a
variety of instruction set architectures), to numerous operat-
ing system implementations and to systems in which both
conventional and virtualized hardware may be provided. As
described herein, the embodiments are also general to a vari-
ety of storage architectures, including storage virtualization
systems such as those based on storage area network (SAN)
or network attached storage (NAS) technologies.

Accordingly, in view of the foregoing and without limita-
tion on the range of underlying processor, hardware or system
architectures, operating systems, storage architectures or vir-
tualization techniques that may be used in embodiments of
the current technique are described. Based on these descrip-
tions, and on the claims that follow, persons of ordinary skill
in the art will appreciate a broad range of suitable embodi-
ments.

With respect to computational systems, generally, FIG. 3
depicts a collection or cluster of computational systems in
which an embodiment of the current technique may be pro-
vided. In particular, FIG. 3 illustrates a collection or cluster in
which at least a collection of virtualization systems 2012,
2012B, 2012C (but more generally, a mix of virtualization
systems and conventional hardware systems such as server
2014) are configured to share storage resources. In the illus-
trated collection or cluster, constituent computational sys-
tems (e.g., virtualization systems 2012, 2012B, 2012C and
server 2014) are coupled to network 2020 which is illustrated
(for simplicity) as a local area network with client systems
2021A, 2021B and communications interface 2022, but will
be more generally understood to represent any of a variety of
networked information systems including configurations
coupled to wide area networks and/or the Internet using any
of a variety of communications media and protocols. One or
more of systems 2012, 20128, 2012C, 2014 may be, include,
or be included in hosts 14a, 145.

In the illustrated collection, storage area network (SAN)
technology is used for at least some storage needs of compu-
tational systems participating in the collection. (The current
technique can also be used for NAS storage allocated to a
virtual machine environment.) In general, network storage
systems (including SAN-based system 2030) provide a level
of virtualization for underlying physical storage elements
(e.g., individual disks, tapes and/or other media), where the
characteristics and/or configuration of particular storage ele-
ments may be hidden from the systems that employ the stor-
age. SAN-based systems typically provide an abstraction of
storage pools from which individual storage units or volumes
may be allocated or provisioned for block level I/O access. In
the illustrated collection, a switched fabric topology consis-
tent with Fibre Channel SAN technology is shown in which
switches 2031A, 2031B, 2031C and/or directors are used to
mediate high bandwidth access (typically using a SCSI,
Small Computer System Interface, command set) to an exten-
sible and potentially heterogeneous set of storage resources
2032A, 2032B, 2032C, 2032D, 2032E, 2032F, 2032G, e.g.,

US 9,081,594 B1

9

SATA (Serial ATA) and/or SCSI disks, tape drives, as well as
arrays thereof (e.g., RAID, i.e., Redundant Array of Inexpen-
sive Disks). Such resources may be distributed and (if desir-
able) may provide data replication and/or off-site storage
elements. Fibre Channel is a gigabit-speed network technol-
ogy standardized in the T11 Technical Committee of the Inter
National Committee for Information Technology Standards
(INCITS). One or more of switches 2031A, 2031B, 2031C
may be, include, or be included in switch 110. One or more of
storage resources 2032A, 2032B, 2032C, 2032D, 2032E,
2032F, 2032G, may be, include, or be included in one or more
of data storage systems 102, 150.

In general, a variety of different types of interconnect enti-
ties, including, without limitation, directors, switches, hubs,
routers, gateways, and bridges may be used in topologies (or
sub-topologies) that include point-to-point, arbitrated loop,
switched fabric portions. Fibre Channel and non-Fibre Chan-
nel technologies including those based on iSCSI protocols
(i.e., SCSI command set over TCP/IP) or ATA-over-Ethernet
(AoE) protocols may be used in embodiments of the storage
mapping technique. Similarly, any of a variety of media
including copper pair, optical fiber, etc. may be used in a
network storage system such as SAN 2030.

Although not specifically illustrated in FIG. 3, persons of
ordinary skill in the art will recognize that physical storage is
typically organized into storage pools, possibly in the form of
RAID groups/sets. Storage pools are then subdivided into
storage units (e.g., storage volumes 2033 that are exposed to
computer systems, e.g., as a SCSI LUN on a SAN commu-
nicating via Fibre Channel, iSCSI, etc.). In some environ-
ments, storage pools may be nested in a hierarchy, where
pools are divided into sub-pools. In at least some cases, the
term LUN may represent an address for an individual storage
unit, and by extension, an identifier for a virtual disk of other
storage device presented by a network storage system such as
SAN 2030.

Embodiments of the current technique may be understood
in the context of virtual machines 2013 (or virtual computers)
that are presented or emulated within a virtualization system
such as virtualization system 2012 executing on underlying
hardware facilities 2015. However, in addition, migration
from (or to) a computational system embodied as a conven-
tional hardware-oriented system may be supported in some
systems configured in accordance with the current technique.
Nonetheless, for simplicity of description and ease of under-
standing, embodiments are described in which individual
computational systems are embodied as virtualization sys-
tems that support one or more virtual machines.

Although certain virtualization strategies/designs are
described herein, virtualization system 2012 is representative
of a wide variety of designs and implementations in which
underlying hardware resources are presented to software
(typically to operating system software and/or applications)
as virtualized instances of computational systems that may or
may not precisely correspond to the underlying physical
hardware.

With respect to virtualization systems, the term virtualiza-
tion system as used herein refers to any one of an individual
computer system with virtual machine management func-
tionality, a virtual machine host, an aggregation of an indi-
vidual computer system with virtual machine management
functionality and one or more virtual machine hosts commu-
nicatively coupled with the individual computer system, etc.
Examples of virtualization systems include commercial
implementations, such as, for example and without limita-
tion, VMware® ESX Server™ (VMware and ESX Server are
trademarks of VMware, Inc.), VMware® Server, and

20

40

45

10

VMware® Workstation, available from VMware, Inc., Palo
Alto, Calif.; operating systems with virtualization support,
such as Microsoft® Virtual Server 2005; and open-source
implementations such as, for example and without limitation,
available from XenSource, Inc.

As is well known in the field of computer science, a virtual
machine is a software abstraction—a “virtualization”—of an
actual physical computer system. Some interface is generally
provided between the guest software within a VM and the
various hardware components and devices in the underlying
hardware platform. This interface-which can generally be
termed “virtualization layer”—may include one or more soft-
ware components and/or layers, possibly including one or
more of the software components known in the field of virtual
machine technology as “virtual machine monitors” (VMMs),
“hypervisors,” or virtualization “kernels.”

Because virtualization terminology has evolved over time,
these terms (when used in the art) do not always provide clear
distinctions between the software layers and components to
which they refer. For example, the term “hypervisor” is often
used to describe both a VMM and a kernel together, either as
separate but cooperating components or with one or more
VMM incorporated wholly or partially into the kernel itself.
However, the term “hypervisor” is sometimes used instead to
mean some variant of a VMM alone, which interfaces with
some other software layer(s) or component(s) to support the
virtualization. Moreover, in some systems, some virtualiza-
tion code is included in at least one “superior” VM to facilitate
the operations of other VMs. Furthermore, specific software
support for VMs is sometimes included in the host OS itself.

Embodiments are described and illustrated herein prima-
rily as including one or more virtual machine monitors that
appear as separate entities from other components of the
virtualization software. This paradigm for illustrating virtual
machine monitors is only for the sake of simplicity and clarity
and by way of illustration. Differing functional boundaries
may be appropriate for differing implementations. In general,
functionality and software components/structures described
herein can be implemented in any of a variety of appropriate
places within the overall structure of the virtualization soft-
ware (or overall software environment that includes the vir-
tualization software).

With respect to the virtual machine monitor, in view of the
above, and without limitation, an interface usually exists
between a VM and an underlying platform which is respon-
sible for executing VM-issued instructions and transferring
data to and from memory and storage devices or underlying
hardware. A VMM is usually a thin piece of software that runs
directly on top of a host, or directly on the hardware, and
virtualizes at least some of the resources of the physical host
machine. The interface exported to the VM is then the same as
the hardware interface of a physical machine. In some cases,
the interface largely corresponds to the architecture,
resources and device complements ofthe underlying physical
hardware; however, in other cases it need not.

The VMM usually tracks and either forwards to some form
of operating system, or itself schedules and handles, all
requests by its VM for machine resources, as well as various
faults and interrupts. An interrupt handling mechanism is
therefore included in the VMM. As is well known, in the Intel
1A-32 (“x86”) architecture, such an interrupt/exception han-
dling mechanism normally includes an interrupt descriptor
table (IDT), or some similar table, which is typically a data
structure that uses information in the interrupt signal to point
to an entry address for a set of instructions that are to be
executed whenever the interrupt/exception occurs. In the Intel
1A-64 architecture, the interrupt table itself contains interrupt

US 9,081,594 B1

11

handling code and instead of looking up a target address from
the interrupt table, it starts execution from an offset from the
start of the interrupt when a fault or interrupt occurs. Analo-
gous mechanisms are found in other architectures. Based on
the description herein, interrupt handlers may be adapted to
correspond to any appropriate interrupt/exception handling
mechanism.

Although the VM (and thus applications executing in the
VM and their users) cannot usually detect the presence of the
VMM, the VMM and the VM may be viewed as together
forming a single virtual computer. They are shown and
described herein as separate components for the sake of clar-
ity and to emphasize the virtual machine abstraction
achieved. However, the boundary between VM and VMM is
somewhat arbitrary. For example, while various virtualized
hardware components such as virtual CPU(s), virtual
memory, virtual disks, and virtual device(s) including virtual
timers are presented as part of a VM for the sake of conceptual
simplicity, in some virtualization system implementations,
these “components” are at least partially implemented as
constructs or emulations exposed to the VM by the VMM.
One advantage of such an arrangement is that the VMM may
be set up to expose “generic” devices, which facilitate VM
migration and hardware platform-independence. In general,
such functionality may be said to exist in the VM or the VMM.

It is noted that while VMMs have been illustrated as
executing on underlying system hardware, many implemen-
tations based on the basic abstraction may be implemented. In
particular, some implementations of VMMs (and associated
virtual machines) execute in coordination with a kernel that
itself executes on underlying system hardware, while other
implementations are hosted by an operating system executing
on the underlying system hardware and VMMs (and associ-
ated virtual machines) executed in coordination with the host
operating system. Such configurations, sometimes described
as “hosted” and “non-hosted” configurations, are illustrated
in FIGS. 4 and 5. However, the description herein refers to the
physical system that hosts a virtual machine(s) and support-
ing components, whether in the “hosted” or “non-hosted”
configuration, as a virtual machine host. To avoid confusion,
the “hosted” configuration will be referred to herein as “OS
hosted” and the “non-hosted” configuration will be referred
to as “non-OS hosted.” In the “OS hosted” configuration, an
existing, general-purpose operating system (OS) acts as a
“host” operating system that is used to perform certain [/O
operations. In the “non-OS hosted” configuration, a kernel
customized to support virtual machines takes the place of the
conventional operating system.

With respect to OS hosted virtual computers, FIG. 4
depicts an embodiment of a virtualization system configura-
tion referred to as an “OS hosted” configuration. Virtualiza-
tion system 900 includes virtual machines 950, 950A, and
950B and respective virtual machine monitors VMM 910,
VMM 910A, and VMM 910B. Virtualization system 900 also
includes virtualization layer 990, which includes VMMs 910,
910A, and 910B. VMMs 910, 910A, and 910B are co-resi-
dent at system level with host operating system 920 such that
VMMs 910, 910A, and 910B and host operating system 920
can independently modify the state of the host processor.
VMM call into the host operating system via driver 921 and
adedicated one of user-level applications 930 to have host OS
920 perform certain 1/O operations on behalfof a correspond-
ing VM. Virtual machines 950, 950A, and 9508 in this con-
figuration are thus hosted in that they run in coordination with
host operating system 920. Virtual machine 950 is depicted as
including application guests 961, operating system guest 951,
and virtual system 952. Virtualization systems that include

5

10

20

25

30

40

45

50

55

60

65

12

suitable facilities are available in the marketplace. For
example, VMware® Server virtual infrastructure software
available from VMware, Inc., Palo Alto, Calif. implements an
OS hosted virtualization system configuration consistent
with the illustration of FIG. 4; and VMware® Workstation
desktop virtualization software, also available from VMware,
Inc. also implements a hosted virtualization system configu-
ration consistent with the illustration of FIG. 4.

With respect to non-OS hosted virtual computers, FIG. 5
depicts an embodiment of a virtualization system configura-
tion referred to as a “non-OS hosted” virtual machine con-
figuration. In FIG. 5, virtualization system 1000 includes
virtual machines 950, 950A, and 9508 as in FIG. 4. In con-
trast to FIG. 4, virtualization layer 1092 of FIG. 5 includes
VMMs 1010, 1010A, and 1010B, and dedicated kernel 1090.
Dedicated kernel 1090 takes the place, and performs the
conventional functions, of a host operating system. Virtual
computers (e.g., VM/VMM pairs) run on kernel 1090. Virtu-
alization systems that include suitable kernels are available in
the marketplace. For example, ESX Server™ virtual infra-
structure software available from VMware, Inc., Palo Alto,
Calif. implements a non-hosted virtualization system con-
figuration consistent with the illustration of FIG. 5.

Different systems may implement virtualization to differ-
ent degrees— “virtualization™ generally relates to a spectrum
of definitions rather than to a bright line, and often reflects a
design choice in respect to a trade-off between speed and
efficiency and isolation and universality. For example, “full
virtualization” is sometimes used to denote a system in which
no software components of any form are included in the guest
other than those that would be found in a non-virtualized
computer; thus, the OS guest could be an off-the-shelf, com-
mercially available OS with no components included specifi-
cally to support use in a virtualized environment.

With respect to para-virtualization, as the term implies, a
“para-virtualized” system is not “fully” virtualized, but rather
a guest is configured in some way to provide certain features
that facilitate virtualization. For example, the guest in some
para-virtualized systems is designed to avoid hard-to-virtual-
ize operations and configurations, such as by avoiding certain
privileged instructions, certain memory address ranges, etc.
As another example, many para-virtualized systems include
an interface within the guest that enables explicit calls to other
components of the virtualization software. For some, the term
para-virtualization implies that the OS guest (in particular, its
kernel) is specifically designed to support such an interface.
According to this definition, having, for example, an off-the-
shelf version of Microsoft Windows XP as the OS guest
would not be consistent with the notion of para-virtualization.
Others define the term para-virtualization more broadly to
include any OS guest with any code that is specifically
intended to provide information directly to the other virtual-
ization software. According to this definition, loading a mod-
ule such as a driver designed to communicate with other
virtualization components renders the system para-virtual-
ized, even if the OS guest as such is an off-the-shelf, com-
mercially available OS not specifically designed to support a
virtualized computer system.

Unless otherwise indicated or apparent, virtualized sys-
tems herein are not restricted to use in systems with any
particular “degree” of virtualization and are not to be limited
to any particular notion of full or partial (“para-") virtualiza-
tion.

In the preferred embodiment, the embodiment operates in
cooperation and may be a part of computer software, operat-
ing the preferred EMC CLARIiiON or Symmetrix storage
systems available from EMC Corporation of Hopkinton,

US 9,081,594 B1

13

Mass., although one skilled in the art will recognize that the
current technique may be used with other data storage sys-
tems. In the preferred embodiment, EMC CLARiiON storage
system implements aspects of the current technique as part of
software that operates with such a storage system.

In the preferred embodiment, VMware virtual processing
includes the VMware ESX Server technology and provides a
VMM and a VM that has at least one virtual processor and is
operatively connected to the VMM for running a sequence of
VM instructions, which are either directly executable or non-
directly executable. VMware technology, including the ESX
server, is described in U.S. Pat. No. 6,397,242 to Devine et. al,
issued May 28, 2002, which is hereby incorporated in its
entirety by this reference.

In a preferred embodiment, referring to FIG. 6, a Data
Storage Environment 610 is shown including a VMware ESX
Server 612 having a series of Virtual Machines 614a-n, a
database 619 and VM Kernel 616. Server 612 engages on
Data Storage System 623 logical units 618a-b and 620a-b,
designated with virtual drive designations e:\ and c:\, respec-
tively.

The VMware ESX Server is configured to boot Virtual
Machines (VMs) from external storage. In the example case
of a preferred embodiment shown in FIG. 6, a Data Storage
System 623 (e.g., EMC CLARIiiON) contains both the boot
volume (c:\) and another volume (e:\) for a preferred Win-
dows 2000 VM. Any VMware-supported Guest operating
system would work in view of the teachings herein. Currently,
such Guest operating systems include most of the popular x86
operating systems, including Windows and Linux. Similarly,
additional drives could be added, up to half the supported
number of Logical Unit Numbers (LUNs) on an ESX Server.

Regarding F1G. 7, taking a closer look at one of the volume
pairs that has been discussed with reference to FIG. 6, it can
be seen thatlogical volume 618a also known as LUN 1 has the
VMware VM configuration (.vmx) file. It also has the two
other files that comprise the e:\ drive for Virtual Machine
614a. First, LUN 1 has a pointer—called lun2.vmdk—to the
“raw disk” atlogical volume 18a also known as LUN 2, where
most of the data resides. Second, there is a standard VMware
ESX Server “.REDO log” on LUN 1. This .REDO log con-
tains tracks that have been changed since the last time a
.REDO log had been written out, or flushed, to LUN 2. This
uses the preferred VMware VMFS “raw disk mapping”
(RDM) functionality. The VMkernel 616 of FIG. 6 presents
one e:\ drive to the Virtual Machine 614a from a combination
of data it finds on the two LUNs 618a and 6185.

FIG. 8 illustrates an embodiment in which a coordination
and provisioning system 201 (such as VMware® vCenter™
Server) is employed to facilitate provisioning of storage
(202), e.g., LUNS, derived from underlying storage media
231 (and RAID groups (RGs) or pools 211,212, 213 and 215)
of storage system or storage area network (SAN) 230 and to
provision, control and coordinate (see 203) execution of vir-
tual machine instances (e.g., VMs 213A, 213B, 213C and
213D) on respective virtualization systems 212A and 212B.

Thus, for example, portions 232 and 233 of storage 231
may be provisioned from RAID group or pool 211 as storage
volume 222 (LUNO006) which may encode an encapsulation
of an exposed virtual disk(s) and virtual machine state. Sys-
tem 201 may be used to handle a failover situation (204) for
the virtual machine instances so that, for example, virtual
machine instance 213B' can take over for a failed virtual
machine instance 213B using LUNO06. In general, a virtual
server such as VMware® vCenter™ Server manages virtual
machines. A virtual machine is associated with a unique
identifier and information about its virtual devices, including

5

10

15

20

25

30

35

40

45

50

55

60

65

14

virtual disks. Further, for example, vCenter™ Server as
described above is part of a virtualized environment deployed
using VMware® vSphere™.

Referring to FIG. 9, shown is detailed representation of a
collection of computational systems in which an embodiment
of the current technique may be provided. VMware®
vSphere™ provides management services such as VMware®
vCenter™ Agent that allows vSphere™ hosts 310 to connect
to vCenter™ Server 320 for centralized management of the
hosts and virtual machines. Further, VMware® vCenter™
Server is a centralized management tool for the VMware®
vSphere™. VMware® vCenter™ Server 320 enables man-
agement of one or more ESX servers 312, 314, 316, and
Virtual Machines (VMs) included in each ESX server using a
single console application. VMware® vCenter™ Server 320
provides storage administrators insight into the status and
configuration of clusters, hosts, VMs, storage, operating sys-
tems, and other critical components of a virtual infrastructure
from a single place (e.g., console application). Further,
VMware® vCenter™ Server 320 may be installed on a physi-
cal or virtual machine. In a virtualized environment such as
VMware® vSphere™ environment, a vCenter™ Server
instance manages a set of ESX servers and storage resources
associated with the set of ESX servers. Storage devices of a
data storage system are used and managed by a vCenter™
Server instance.

Further, a user of a VMware® vSphere™ client 324 may
access inventory and configuration information from one or
more vCenter™ Servers. A user of vSphere™ client 324 may
view storage information using an instance of a virtual server
(e.g., vCenter™ Server instance) if the user possess valid
permissions for accessing the virtual server. A single instance
of vCenter™ Server provides capability to manage hundreds
of hosts, and thousands of virtual machines. Further, one or
more vCenter™ Servers may be linked together to provide
capability to manage of thousands of hosts and tens of thou-
sands of virtual machines using one or more vCenter™
Server instances via a single management console (e.g.
VMware® vSphere™ client 322).

Further, vCenter™ Server 320 includes a status component
318 that displays the health of components of the vCenter™
Server 320 thereby enabling storage administrators to quickly
identify and correct failures that may occur in the vCenter™
management infrastructure 301. Additionally, vCenter™
Server 320 provides alerts and/or alarms to storage adminis-
trators such that the storage administrators may attempt to
resolve failures before the failures interrupt the availability of
applications executing on storage resources of the vCenter™
Server 320.

In at least one embodiment of the current technique, a
virtual system (e.g., VM, ESX Server) includes a storage tab
that is displayed in a graphical user interface on a manage-
ment console ofthe virtual system such that storage entities of
a virtualized environment may be managed using storage
information provided in the storage tab. Further, a user may
set alerts and/or alarms in a virtual system. Further, a virtual
server in a virtualized environment (e.g. vSphere™) provides
a detailed view of every storage component included in a
storage layout of the virtualized environment. A storage lay-
out may provide information to storage administrators
regarding available communication paths and a logical
grouping of storage objects that may share storage resources.
Further, a virtual server (e.g., vCenter™ Server 320) monitors
storage resources by maintaining alarms for managed storage
entities, such as data stores and clusters. An alarm may be set
to trigger on an occurrence of a specific event such that the
alarm may notify a storage administrator regarding the occur-

US 9,081,594 B1

15

rence of the event. For example, an event may include a
change in status (such as “Host Exited Maintenance Mode™),
an access control operation (such as “Role Created”), and a
license event (such as “License Expired”). In addition, an
alarm is triggered only when the alarm satisfy a specific time
condition in order to minimize the number of false alarms.

In at least one embodiment of the current technique, VASA
interfaces are a proprietary set of interfaces defined by
VMware® for reporting storage provisioned for a virtual
machine in a virtualized environment such that different types
of data storage systems are supported in a vendor-neutral
manner. A VASA interface is a proprietary SOAP-based web
interface that is used by a virtual machine deployed in a
virtualized environment that is using one or more virtualized
product or software from VMware®. A VASA interface is
used for retrieving storage system information from data
storage system 300 such that the VAS A interface provides the
storage system information to vCenter™ Server 320 and its
administrators managing ESX® servers and virtual
machines. The storage system information includes informa-
tion associated with storage devices of the data storage sys-
tem 300 such that the information is used by a virtual machine
for provisioning storage, monitoring storage and trouble-
shooting failures via a management system such as vCenter™
Server 320 of a virtualized environment (e.g. vSphere™). A
data storage system 300 provides storage to a virtual machine
such that users of the virtual machine may use the storage for
operations such as storing and managing data. A server com-
ponent 304, 308 (also referred to as “VASA server” or “VASA
provider”) resides on data storage system 300 such that the
server component communicates with a virtual machine for
providing storage information to the virtual machine. A client
component (also referred to as “VASA client”) resides on a
virtual machine or virtual client (e.g., vCenter™ Server 320)
managing one or more virtual machines. A VASA client con-
nected to data storage system 300 creates a usage context such
that the data storage system 300 provides storage information
that is relevant to the usage context of the VASA client.
Storage information reported by a data storage system may
include information associated with a set of storage elements
(also referred herein as “storage entities™). A storage entity is
a storage object such as a LUN, file system, array, port. A
storage monitoring service 318 executing on a virtual server
320 gathers storage information from data storage system 300
and provides the storage information to users of virtual
machines (e.g., vSphere™ client 324).

In at least one embodiment of the current technique, VASA
interfaces may include a set of connection interfaces (also
referred to as “Application Programming Interface (API)”)
that help establish or remove a secure connection between
vCenter™ Server 320 and VASA provider 304, 308. VASA
provider 304, 308 uses a VASA interface to communicate
with a virtual machine. Additionally, VASA interfaces may
include a set of client context APIs that identifies a usage
context of a virtual client which is required to retrieve storage
information from data storage system 300. Further, VASA
interfaces may include a set of storage discovery APIs that
provide information regarding data storage system 300 and
information associated with physical and logical storage
devices of the data storage system 300 that are pertinent to a
virtualized environment. Additionally, VASA interfaces may
include a set of status APIs that provide information such as
changes in storage configuration or system availability of data
storage system 300. Further, A VASA interface may define a
profile (such as a block, file and capability) to enable data
storage system 300 to provide information associated with
block storage devices, file systems stored on storage devices

10

15

20

25

30

35

40

45

55

60

65

16

of'the data storage system, storage capabilities of LUNs, and
storage capabilities of file systems of the data storage system
300.

In at least one embodiment of the current technique, a
VASA provider may be implemented as a modular generic
framework (e.g., an OSLS-based provider) that may execute
a dynamically loadable library that is responsible for per-
forming operations associated with a request issued by a
VASA client. In at least one embodiment of the current tech-
nique, a VASA provider may reside on a control station of a
file based data storage system. Alternatively, in at least one
embodiment of the current technique, a VASA provider may
reside on a storage processor of a block based data storage
system. An instance of a VASA provider is created which
executes on a data storage system and is configured by a user
of a virtual machine included in vSphere™ system such that
the vSphere™ may retrieve storage system information from
the data storage system using the instance of the VASA pro-
vider.

Referring to FIG. 10, shown is a more detailed representa-
tion of components that may be included in an embodiment
using the techniques described herein. Data storage system-1
325, data storage system-2 326, and data storage system-n
327 indicates different storage systems that use different type
of storage formats. With reference also to FIG. 9, a virtual
machine or virtual client such as vSphere™ client 322 con-
nected to a virtual server such as vCenter™ Server 320 (illus-
trated in FIG. 10 as virtual server-1 334, virtual server-2 335,
virtual server-n 336) initiates a connection between the vir-
tual server and a data storage system. For example, virtual
server-1 334 communicates with data storage system-1 325,
virtual server-2 335 communicates with data storage sys-
tem-2 326, and virtual server-n 336 communicates with data
storage system-n 327. Further, for example, data storage sys-
tem-1 325 includes VASA provider 331 and VASA protocol
adapter 328, data storage system-2 326 includes VASA pro-
vider 332 and VASA protocol adapter 329, and data storage
system-n 327 includes VASA provider 333 and VASA proto-
col adapter 330.

In at least one embodiment of the current technique, a
VASA provider communicates with a virtual system and pro-
vides information regarding storage objects (also referred to
as “storage entities”) provisioned for the virtual system. Fur-
ther, in at least one embodiment of the current technique, a
data storage system includes a VASA protocol adapter (also
referred to as “protocol converter”) which helps translate
proprietary SOAP messages of VASA APIs of VMware® into
corresponding ECOM operations associated with each of the
proprietary SOAP messages. Further, a VASA protocol
adapter helps authenticate a VASA request such that a request
payload of the VASA request includes credentials that are
needed for authentication. Generally, a VASA request is
authenticated when a virtual system connects to a VASA
provider and registers a secure certificate by invoking a VASA
interface. A VASA protocol adapter extracts username and
password parameters and provide the parameters to ECOM
for authentication.

Referring to FIG. 11, shown is a more detailed representa-
tion of components that may be included in an embodiment
using the techniques described herein. In at least one embodi-
ment of the current technique, VASA protocol adapter 364
may be implemented as a component (such as E-COM based)
that converts a query received from a virtual system in a
format that is used by data storage system 300. In at least one
embodiment of the current technique, a VASA Provider may
be an OSLS-based provider that is responsible for performing
operations required to manage a VASA client (e.g. virtual

US 9,081,594 B1

17

system). Further, in at least one embodiment of the current
technique, VASA provider 331 includes a universal frame-
work module (e.g., VASA common provider 366) and a plat-
form specific module (e.g., VASA provider block adapter
368).

In at least one embodiment of the current technique, VASA
common provider 366 includes a set of platform independent
functions (also referred to as “interfaces” or “services”) that
are common to all VASA modules created by different types
of data storage systems (e.g., a block based storage system, a
file based data storage system). The set of platform indepen-
dent functions includes functionality for validating and stor-
ing client certificates, management of a secure connection
and session context, and management of an event queue and
alarm queue. By contrast, a platform specific module (e.g.,
VASA provider block adapter 368 includes a set of platform
dependent functions such as collection of events and alarms,
configuration of events and alarms, and execution of VASA
queries on data storage system 300. Further, VASA common
provider 366 manages a usage context for a virtual system by
storing the usage context for the virtual system such that a
platform specific module (e.g., VASA provider block adapter
368) may use the usage context for filtering storage informa-
tion. Further, VASA common provider 366 manages a VASA
session identifier by mapping the VASA session identifier to
an appropriate usage context for a virtual client. Moreover,
VASA common provider 366 creates a new session context
each time a virtual client such as vCenter™ server invokes a
VASA interface (e.g., “SetContext”) for starting a session. A
session context associated with a session includes informa-
tion such as a client scope which is provided by a virtual client
such that the client scope does not change for the duration of
the session, a session identifier that is created by VASA com-
mon provider 366 for the session, a system event queue, a last
polled event identifier, an alarm queue, and last polled alarm
identifier.

In at least one embodiment of the current technique, VASA
provider block adapter 368 includes a set of functions that are
specific to the type of data storage system 300 such as col-
lecting and posting system alarms and configuration events,
processing a usage context provided by a virtual server,
executing queries for retrieving storage information, filtering
the storage information based on the usage context and pro-
viding platform specific messages. Further, VASA provider
block adapter 368 transforms block storage objects into stor-
age objects that may be processed by VASA interfaces. In at
least one embodiment of the current technique, VASA pro-
vider block adapter 368 may be implemented as a dynami-
cally loadablelibrary such as an OSLS plug-in (e.g.,a DLL on
Microsoft® Windows™, a share library on Linux) in order to
leverage a modular generic framework (e.g., an OSLS pro-
vider framework) for querying provider components (e.g.,
storage provider 378, alert provider 380), subscribing to indi-
cations, and posting alarms to VASA common provider 366.
Further, VASA provider block adapter 368 reports storage
system information (e.g., storage topology, configuration
information) of the disk array 382 and storage entities of data
storage system 300 to one or more virtual servers based on a
usage context of'a session established between a virtual server
and VASA provider block adapter 368. The VASA provider
block adapter 368 includes support for VASA APIs that may
provide storage information such as a list of storage entities
based on a type of a storage entity, details of storage topology
of' the storage entities, storage properties for the storage enti-
ties, and events for reporting configuration changes.

In at least one embodiment of the current technique, a
virtual system (e.g., a virtual data center manager client or

10

15

20

25

30

35

40

45

50

55

60

65

18

simply referred to as “virtual client”) creates a session with a
data storage system for reporting storage provisioned for the
virtual system by the data storage system. A session is asso-
ciated with a session view. A session view is represented by a
usage context that includes storage system information asso-
ciated with storage objects provisioned for use by a virtual
system. Typically, a virtual system may send one or more
queries to a data storage system for gathering storage system
information associated with a usage context. Further, a virtual
system may send one or more queries for gathering updated
storage system information associated with changes to con-
figuration of storage objects and health status of a data storage
system.

Referring back to FIG. 11 with reference also to FIG. 9, a
virtual machine or virtual client such as vSphere™ client 322
connected to a virtual server such as vCenter™ Server 320
(illustrated in FIG. 11 as virtual server-1 350, virtual server-2
352, virtual server-n 354) initiates a connection between the
virtual server and VASA provider 331 executing on data
storage system 300. A user (e.g. storage administrator) of the
virtual client may need to provide credential information such
as a Uniform Resource Locator (URL) address of the data
storage system (e.g. “https://<IP address of storage processor
or control station>/""), a user name for the user (e.g., “admin-
istrator”, “securityadmin” or “vmadmin”), and a password
associated with the user name for establishing the connection.
The credential information is used by the virtual server in
order to establish a secure connection with the VASA pro-
vider 331. If the credential information is valid and accepted
by the data storage system 300, a certificate for the virtual
server is registered with the data storage system 300. The
certificate is then used to authenticate subsequent requests
from the virtual server. In at least one embodiment of the
current technique, a session is started when a connection is
established between a virtual server and data storage system
300, and the session ends when a user removes information
regarding the VASA provider 331 from configuration settings
of the virtual server thereby resulting into termination of the
secure connection.

In at least one embodiment of the current technique, a
virtual server uses a VASA API (e.g., “SetContext” API) to
initialize a session after a secure connection is established
between the virtual server and data storage system 300. The
“SetContext” API provides a storage object (e.g., “VasaVen-
dorProviderInfo” object) as a return parameter, which
includes a session identifier. A session identifier uniquely
identifies a session created between a virtual server and an
instance of VASA provider 331. A new session identifier is
generated each time the “SetContext” API is invoked. A vir-
tual server includes a session identifier associated with a
session in an HTTP cookie that is sent with a request (e.g.,
VASA API) to the VASA provider 331 of the data storage
system 300 once the session is established. VASA provider
331 validates a session identifier each time a request is
received from a virtual server. A virtual server may invoke the
“SetContext” API in order to obtain a new session identifier,
even when a new secure connection has not been created yet.

In at least one embodiment of the current technique, data
storage system 300 provides storage system information
associated with storage devices of disk array 382 to a virtual
server such as vCenter™ Server 320 (illustrated in FIG. 11 as
virtual server-1 350, virtual server-2 352, virtual server-n
354) based on a usage context provided by a virtual client of
the virtual server. A virtual client of a virtual server provides
ausage context to data storage 300 system after a connection
is established between the virtual client and the data storage
system 300. Further, the virtual client updates the usage con-

US 9,081,594 B1

19

text each time the virtual client detects a change in storage
elements associated with the usage context. A usage context
may include information such as a list of paths of ESX hosts’
initiator and a data storage system port receiving the request
(e.g. world wide names), a list of iSCSI Qualified Names
(IQN), and a list of NFS mount points (e.g., server name/IP+
file system path) of the ESX hosts. Data storage system 300
uses information of a usage context to appropriately filter
storage system information of storage devices and provides a
subset of the storage system information to a virtual client
such that the subset of the storage information provided is
relevant to the usage context of the virtual client. For
example, on a block based data storage system, block initia-
tors may be mapped to a set of LUNs associated with the
block initiators by using a storage group association. Simi-
larly, for example, on a block and file based data storage
system, IQNs and NFS mount points may be used to locate
VMware® applications (such as applications using a NFS
data store, VMFS data store) that are used by an ESX host
managed by a vCenter™ Server. In at least one embodiment
of the current technique, the “SetContext” API establishes a
usage context for a virtual server. VASA provider 331 maps
information associated with a usage context to storage system
information of data storage system 300 such as list of arrays,
processors, ports, LUNs, and file systems. VASA provider
331 uses information associated with a usage context for
reporting storage system information to a virtual client of a
virtual server by filtering information regarding storage enti-
ties from the storage system information that are not associ-
ated with the usage context of the virtual server.

In at least one embodiment of the current technique, a
virtual server sends a full query to data storage system 300 to
retrieve storage system information for every storage ele-
ments associated with a usage content of the virtual server
after a connection is established by the virtual server with the
data storage system 300. However, each subsequent query
issued by the virtual server is a partial query that retrieves
information associated with changes in the storage system
information retrieved by the full query (such as instances of
storage elements added and/or removed from the storage
system information). In other words, the virtual server issues
aquery torequest a list of changed storage elements instead of
issuing a full query after the connection is established and the
initial full query retrieves the storage system information. A
configuration change event is queued for a storage element
(also referred to as “storage object”) when data storage sys-
tem 300 detects a change in the storage element that may alter
any one of a VASA-defined storage property for the storage
element. Data storage system 300 processes a queue of con-
figuration change events in order to provide a list of changed
storage elements to a virtual server. A virtual server periodi-
cally request a list of configuration change events and updates
storage system information associated with a usage context of
the virtual server based on the list of configuration change
events. For example, if data storage system 300 provides a list
of events associated with changes in storage system informa-
tion associated with a set of LUNSs, a virtual server queries the
set of LUNs associated with the list of events. Events and
alarms are gathered to log changes in health, capacity and
status of a storage entity. An events may also include system
events that provide description of an alarm.

With reference also to FIG. 9, in at least one embodiment of
the current technique, VASA provider 331 of data storage
system 300 provides up-to-date storage system information
to a virtual client (e.g., vSphere™ Client 324) of a virtual
server (e.g., vCenter™ Server 320) by maintaining lists (or
queues) of events and alarms. A list of events includes con-

10

15

20

25

30

35

40

45

50

55

60

65

20

figuration change events that are relevant to a usage context
established for a session initiated by a virtual client of a
virtual server. Similarly, a list of alarms includes storage
system alarms that are relevant to a usage context established
for a session initiated by a virtual client of a virtual server. A
configuration scope is defined by usage context provided to
the “SetContext” API such that the configuration scope is
applicable to queries sent by a virtual server to data storage
system 300 after a session is established. Further, a configu-
ration scope may also be defined by configuration change
events and storage system alarms collected in queues by
VASA provider 331. However, a configuration scope may be
changed by a virtual server when the virtual server executes
the “SetContext” API. VASA provider 331 may manage one
or more sessions from one or more virtual servers such that
the maximum number of sessions that may be managed is
configurable by a user or a system. Further, a session context
state associated with a session may be invalidated and reset in
response to either execution of a VASA API (e.g., “SetCon-
text” API) by a virtual server or as a result of an error condi-
tion. A session context reset condition may trigger a full query
by a virtual server.

Referring to FIG. 12, shown is a more detailed representa-
tion of components that may be included in an embodiment
using the techniques described herein. Data storage systems
500, 501 are block based data storage systems and data stor-
age system 502 is a file based data storage system. Each data
storage system 500-502 includes VASA protocol adapter
(503, 505, 504 respectively) and VASA provider (510, 508,
506 respectively). Further, each VAS A provider 510, 508, 506
includes a universal framework module such as a VASA com-
mon provider that includes a set of common functionality, and
a platform specific module (e.g., a VASA provider block
adapter). For example, VASA provider 510 includes a plat-
form specific module such as UEM block adapter 511, VASA
provider 508 includes a platform specific module such as
UEM block adapter 509, and VASA provider 506 includes a
platform specific module such as UEM file adapter 507.

Referring to FIG. 13, shown is a more detailed representa-
tion of components that may be included in an embodiment
using the techniques described herein. In at least one embodi-
ment of the current technique, a VASA service class imple-
ments a set of interfaces that are used by a VASA Protocol
adapter and corresponds to VASA interfaces used by a virtual
system. A VASA adapter callback service class implements a
set of interfaces that are used by a platform specific module
(e.g., VASA provider block adapter, VASA provider file
adapter) in order to add an event or alarm for a specified
session context. The set of interfaces included in the VASA
adapter callback service class are implementation specific
interfaces that allow the platform specific module to invoke
an interface of a VASA common provider. A session context
manager class implements functionality for managing VASA
session contexts such that the session context manager class
includes a set of interfaces for creating and invalidating ses-
sion contexts, providing functions for looking up information
associated with sessions, generating session identifiers, and
tracking sessions. A VASA provider startup hook function
creates an instance of the session context manager class, and
a VASA provider shutdown hook function destroys an
instance of the session context manager class. The session
context manager class uses a session timeout thread class in
order to provide a time out service that is used for invalidating
a session context that has timed out. A session context asso-
ciated with a session times out if a VASA interface has not
been invoked during the session for a specified period of time.
The specific period of time that is used to determine a time out

US 9,081,594 B1

21

may either be defined when a session context is created by a
virtual client or pre-configured as a default value which is
defined by an instance of the session context manager class.
An instance of the session timeout thread class is created
when an instance of the session context manager class is
created. An instance of the session timeout thread class is
destroyed when the session context manager class is
destroyed. Further, an instance of the session context class is
created for each active VASA session context. An instance of
the session context class includes a VASA session usage
context (also referred to simply as “usage context™) for a
session, event and alarm handlers for queuing storage events
and alarms, and a property that stores the last time a VASA
interface is invoked on the session. Further, each time a VASA
interface is invoked on the session context, the property is
updated to indicate the current time thereby allowing the
instance of the session context manager class to find sessions
that have been timed out. The session context manager class
instantiates a session context as part of a VASA service
request processing (e.g. “SetContext” API). The session con-
text is destroyed when the last reference to the instance of the
session context class is destroyed. A vendor adapter fagcade
class provides a functionality to load and unload a platform
specific module such that the vendor adapter facade class
includes an interface that allows a VASA provider to invoke a
function of the platform specific module that is loaded by the
vendor adapter fagade class. The VAS A provider startup hook
class creates an instance of the vendor adapter facade class
and the VASA provider shutdown hook class destroys the
instance of the vendor adapter facade class. In at least one
embodiment of the current technique, a VASA provider
works in conjunction with a set of transaction processes (also
referred to as “threads™) for processing invocations of CIM
functions, and a platform specific thread for providing a ses-
sion timeout service.

FIG. 14 illustrates a sequence for registering a client cer-
tificate when a session is established by a virtual server. With
reference also to FIG. 11, in at least one embodiment of the
current technique, a session is based on a secure HTTPS
communication between a virtual server (e.g. vCenter™
Server) and a VASA Provider 331. A secure HTTPS commu-
nication uses information such as a SSL certificate and a
VASA session identifier (also referred to herein as “session
identifier””) to manage a secure connection. A virtual server
provides credentials information such as a user name, pass-
word and certificate to a VASA interface (e.g., “Register-
VASACertificate” API) such that the VAS A interface adds the
certificate to a trust store of the virtual server. VAS A protocol
adapter 364 handles the initial authentication of the secure
connection. The VASA API “RegisterVASACertificate”
returns a partially populated instance of class “VasaVendor-
ProviderInfo”. The instance includes information such as a
data storage name, a version, an identifier, and a timeout
value. A platform specific module such as VASA provider
block adapter 368 provides the information that is based on
the type of the data storage system 300. Further, the VASA
API “RegisterVAS ACertificate” returns an error (e.g., “Inval-
idLogin”) if the certificate is invalid. Further, the virtual
server (e.g. vCenter™ Server) after registering the certificate
closes the connection and opens a new secure connection. The
certificate is attached to the new secure connection and a
VASA API (e.g., “SetContext”) is invoked to establish a new
VASA session.

FIG. 15 illustrates a sequence for starting a new VASA
session between a virtual server and a data storage system.
With reference also to FIG. 11, in at least one embodiment of
the current technique, VASA provider 331 uses a session

20

35

40

45

55

22

context to manage and track information associated with
VASA interfaces invoked by an instance of a virtual server
(e.g., vCenter™ Server instance). The boundaries of a session
context are defined by two consecutive invocations to the
“SetContext” API such that the session context is created
when a virtual server first invokes the “SetContext” API, and
the session context becomes invalid when the virtual server
subsequently invokes the “SetContext” API. Further, if a vir-
tual server invokes the “SetContext” API and does not pro-
vide a session identifier, VASA provider 331 starts a new
session. Further, if a client context provided by the virtual
server is valid, VASA provider 331 generates a new session
identifier and creates a new session context for the new ses-
sion. Further, VASA provider 331 returns an object “VasaV-
endorProviderInfo” that includes the new session identifier.
Further, a session identifier value is unique across all VASA
sessions. If a subsequent VASA request from the virtual
server that invokes the “SetContext” API does not provide a
valid session identifier, the existing session is invalidated and
anew session is created. Further, VAS A provider 331 ensures
that only one active session exists for a specific virtual server.
Similarly, if a usage context is not valid, VASA provider 331
invalidates the usage context (also referred to as “client con-
text”) that is provided by the “SetContext” API. Further, a
usage context provides VASA provider 331 information such
as a list of initiators, name of a data storage system, IP address
of'the data storage system, and list of exported file systems.

FIG. 16 illustrates a sequence for creating a new VASA
session between a virtual server and a data storage system.
With reference also to FIGS. 11 and 13, in at least one
embodiment of the current technique, an instance of the ses-
sion context manager class includes a set of functions that
helps create a session context, invalidate the session context
and associate the session context with a virtual server. Fur-
ther, when a session context is initialized, handlers for event
and alarm queues associated with the session context are
initialized as well. Once the new session context is initialized,
VASA provider 331 invokes a function call (e.g., “startSes-
sionCollector”) of a platform specific module in order to
initiate platform specific indications (also referred to as “data
storage specific indications™) for the session context. Further,
if the virtual server subsequently invokes the “SetContext”
API in order to start a new session either as a result of a
session timeout or as a result of un-registration of a certificate,
the session context is invalidated. In such a case, VASA pro-
vider 331 invokes a function call (e.g., “stopSessionCollec-
tor”) of a platform specific module (e.g., VASA provider
block adapter 368) in order to terminate the platform specific
indications and release storage resources associated with the
session context. Further, VASA provider 331 destroys the
event and alarm queues and releases memory resources asso-
ciated with the event and alarm queues.

FIG. 17 illustrates a sequence for executing a VASA query
on a data storage system. With reference also to FIGS. 11 and
13, in at least one embodiment of the current technique, all
VASA API queries are executed within a context of a current
session context. VASA provider 331 uses a session identifier
provided by a VASA API in order to determine a session
context associated with the session identifier. If VASA pro-
vider 331 fails to determine the session context, VASA pro-
vider 331 returns an error. Further, VASA common provider
366 delegates the execution of the VASA API to a platform
specific module such as VASA provider block adapter 368.

FIG. 18 illustrates a sequence for managing an alarm asso-
ciated with a session on a data storage system. With reference
also to FIGS. 11 and 13, in at least one embodiment of the
current technique, a system event and an alarm are defined for

US 9,081,594 B1

23

reporting status of a data storage system. A system event
indicates a change to a storage configuration and an alarm
indicates a change in availability of a data storage system.
VASA interfaces “GetEvents” and “GetAlarms” are used for
managing system events and alarms. The VASA interfaces
“GetEvents” and “GetAlarms” are invoked at a regular time
interval in order to poll a data storage system. For example, in
at least one embodiment of the current technique, a data
storage system may be polled every 60 seconds. Further,
system events and alarms are collected and queued asynchro-
nously within a session context.

In at least one embodiment of the current technique, VASA
common provider 366 invokes interfaces (e.g., “startSession-
Collector”, “stopSessionCollector”) of a platform specific
module (e.g., VASA provider block adapter 368) that indi-
cates when to either start or stop collection of system events
and alarms for a session context. A platform specific module
maintains indication subscriptions using platform specific
APIs. Further, a platform specific module receives indica-
tions, converts the indications into VASA objects (e.g.,
“StorageEvent”, “StorageAlarm”), filters the indications
based on a session context that is active for a virtual system,
and submits the filtered indications to a system events queue
and alarms queue associated with the session context using
interfaces (e.g., “addEvent”, “addAlarm™) of VASA common
provider 366. The interfaces such as “addEvent”, “add-
Alarm” of VASA common provider 366 assign a unique
sequential identifier to an object (e.g., “StorageEvent” object,
“StorageAlarm™ object) before adding the objects to an
appropriate queue.

In at least one embodiment of the current technique, a
virtual server such as vCenter™ Server 320 periodically
invokes the interfaces such as “GetEvents” and “GetAlarms”
in order to retrieve events and alarms associated with a ses-
sion context established by the virtual server. In at least one
embodiment of the current technique, VASA common pro-
vider 366 maintains one queue of “StorageEvent” objects and
another queue for “StorageAlarm™ objects. Further, the vir-
tual server provides a sequential identifier to the interface
“GetEvents” for identifying the position of an event in the
queue of events in order to retrieve the event associated with
the sequential identifier. Similarly, the virtual server provides
a sequential identifier to the interface “GetAlarms™ for iden-
tifying the position of an alarm in the queue of alarms in order
to retrieve the alarm associated with the sequential identifier.
Further, VASA provider 361 manages size of the queues of
events and alarms in order to avoid a queue overflow scenario.

Referring to FIG. 19, shown is a detailed representation of
class structures used for an example implementation of a
platform specific module that may be included in an embodi-
ment using the techniques described herein. In at least one
embodiment of the current invention, a platform specific
module of a data storage system provides a platform specific
functionality for a set of interfaces defined by VASA APIs
such that the a platform specific functionality depends upon
the type of the data storage system. Further, a session context
is used to retrieve a session identifier and a usage context
associated with the session context from a platform specific
module. Further, in at least one embodiment of the current
technique, a platform specific module may be implemented as
a shared library module and deployed with a universal frame-
work module (e.g. VASA common provider 366). An instance
of a platform specific module is created and deleted using
functions (e.g., “CreateVendorAdapter”, “DestroyVendor-
Adapter”) implemented by the platform specific module. For
example, “VASAProviderUEMBlockAdapter” module 422
implements a platform specific module for a block based data

10

15

20

25

30

35

40

45

50

55

60

65

24

storage system. Further, a platform specific module such as
“VASAProviderUEMBlockAdapter” module 422 works in
conjunction with a universal framework module such as
VASA common provider 366. Further, “VASAPro-
viderUEMBlockAdapter” module 422 queries storage pro-
viders 378 for retrieving CIM instances and storage proper-
ties in order to perform a VASA query.

Referring to FIG. 20, shown is detailed representation of
class structures used for an example implementation of a
platform specific module that may be included in an embodi-
ment using the techniques described herein. For example,
“VASAProviderUEMFileSystemAdapter” module 423
implements a platform specific module for a file based data
storage system.

Referring to FIG. 21, shown is detailed representation of
class structures used for an example implementation of VASA
provider block adapter 368. A class such as “blocksession-
manager” 402 creates an instance of a class “blocksession”
400 for each session created between an instance of a virtual
server (e.g., vCenter™ Server) and VASA provider 331 of
data storage system 300. The class “blocksession” 400 main-
tains a reference count for the session indicated by the class
“VASAsession” 414 which includes a session identifier and a
usage context indicated by a class “VAS Ausagecontext”. The
class “blocksession” 400 creates a monitor class for servicing
each type of a VASA storage entity. The monitor class may
include class objects such as class “arraymonitor” 410,
“SPmonitor” 408, “contextLUNmonitor” 403, “contextport-
monitor” 404 and “capabilitymonitor” 406. Class “blockses-
sion” 400 creates a usage context initiator set indicated by
class “uc initiatorset” 412 for each entry of the class “VAS Au-
sagecontext” for analyzing storage system information stored
in the monitor classes such as classes “contextL UNmonitor”
403, and “contextportmonitor” 404.

Class “VASAprovideruemblockadapter” 422 processes a
query issued by an instance of a virtual server (e.g., vCenter™
Server). The query is processed by requesting a reference to
an instance of the class “blocksession” 400 from the class
“blocksessionmanager” 402. The reference is used to access
a specific monitor class and execute the query for retrieving
storage system information associated with the specific moni-
tor class. A query for reporting storage system information for
a specific type of storage entity is processed by a monitor
class associated with the specific type of storage entity. Addi-
tionally, the monitor class associated with the specific type of
storage entity manages events and alarms associated with the
specific type of storage entity.

With reference also to F1G. 9, in at least one embodiment of
the current technique. Class “VASAprovideruemblock-
adapter” 422 queries storage provider 378 to retrieve storage
system information in order to process a VASA query
received from a virtual server. Additionally, class “VAS Apro-
videruemblockadapter” 422 registers information to receive
indications from alert provider 380 such that class
“VASAprovideruemblockadapter” 422 may be notified
regarding a change in storage system information of storage
elements of data storage system 300. Upon receiving a noti-
fication, class “VAS Aprovideruemblockadapter” 422 post an
event to a list of events, post an alarm to a list of alarms, and
notifies a virtual server. Class “VASApollthread” 418 coor-
dinates polling requests issued by class “commoncacheman-
ager” 416, and processing of indications received by class
“VASAblockindicationmonitor” 420. For example, class
“contextLUNmonitor” 403 query the class “commoncache-
manager” 416 to retrieve storage information associated with
a usage context for a set of LUNs associated with a session,
and class “contextportmonitor” 404 query the class “com-

US 9,081,594 B1

25

moncachemanager” 416 to retrieve storage information asso-
ciated with a usage context for a set of ports associated with
a session.

Storage system information associated with storage enti-
ties of data storage system 300 is retrieved by a polling
process that is invoked at a regular time interval. Further,
events and alarms are queued in VASA provider 304, 308 by
each session (indicated by an instance of class “blocksession”
400) in data storage system 300 and one or more monitor
classes when either an indication is processed or a poll is
performed. A poll thread 418 co-ordinates the polling process
and indication queue 440 manages processing of indications.
In order to process indications, objects “IndicationMonitor”
420 start executing prior to a first poll request which is issued
after the first session is established by a virtual server such
that an indication associated with a change in a storage entity
that may occur during the first poll request can be processed.
Class “indicationmonitorreceiver” 436 receives an indication
notification, and add the indication to indication queue 440 to
ensure that indications are processed in an ordered arrange-
ment. Class “VASAblockindicationmonitor” 420 manages
class “indicationmonitorreceiver” 436, and registers/de-reg-
isters an instance of the class “indicationobserver” 438 such
that the instance of the class “indicationobserver” 438 indi-
cates an indication received by class “indicationmonitorre-
ceiver” 436.

FIG. 22 illustrates a sequence for a life cycle of a session
established between a virtual server and a VASA provider.
With reference also to FIGS. 9, 11, and 13, in at least one
embodiment of the current technique, a VASA query is
executed in context of a VASA session. Further, VASA com-
mon provider 366 starts a VASA session by invoking an API
(e.g. “startsessioncollector”) to class “VASAprovideruem-
blockadapter” 422. Further, VASA common provider 366
processes a VASA query in context of the VASA session.
VASA common provider 366 stops the VASA session by
invoking an API such as “endsessioncollector”. Class
“VASAprovideruemblockadapter” 422 starts a session by
invoking an API (e.g. “addsession™) to class “blocksession-
manager” 402, which creates an instance of a class “block-
session” 400. Class “blocksessionmanager” 402 maintains a
map of session identifiers and instances of class “blockses-
sion” 400 such that a session is associated with a session
identifier and corresponding instance of class “blocksession”
400. Further, an instance of class “blocksession” 400 creates
one or more instances of monitor classes for each type of
storage entity and invokes an API (e.g., “startmonitoring”) to
an appropriate instance of a monitor class based on a type of
storage entity for which storage system information is
requested by a virtual server. Each instance of a monitor class
uses a poll request and an indication process request to
retrieve storage system information. VASA common provider
366 invokes an API (e.g., “endsessioncollector”) to stop the
VASA session and remove the session identifier associated
with the VASA session from the map maintained by class
“blocksessionmanager” 402.

While the invention has been disclosed in connection with
preferred embodiments shown and described in detail, their
modifications and improvements thereon will become readily
apparent to those skilled in the art. Accordingly, the spirit and
scope of the present invention should be limited only by the
following claims.

What is claimed is:

1. A method for use in managing data storage in virtual
systems, the method comprising:

querying a data storage system by a virtual system, through

a universal framework module of the data storage sys-

30

40

45

o
o

26

tem, wherein the universal framework module includes a
first set of interfaces associated with a format used by the
virtual system to communicate with the data storage
system, wherein the first set of interfaces are used to
provide information to the virtual system independent of
a type of the data storage system, wherein the universal
framework module is in communication with a set of
platform specific modules, each platform specific mod-
ule providing functionality specific to a type of a data
storage system, wherein the universal framework mod-
ule includes a set of functionality common to different
types of data storage systems, wherein the first set of
interfaces included in the universal framework module
translates information received from a set of platform
specific modules to the information provided to the vir-
tual system; and

retrieving from a platform specific module of the set of

platform specific modules information associated with
the data storage, wherein the platform specific module is
associated with the data storage system and provides the
information to the universal framework module,
wherein the platform specific module includes a second
set of interfaces based on the type of the data storage
system, wherein the platform specific module translates
the information associated with the data storage system
retrieved from the data storage system based on the
second set of interfaces to the information provided to
the universal framework module based on the first set of
interfaces.

2. The method of claim 1, wherein the first set of interfaces
is based on VMware® Virtual Sphere Application program-
ming Interfaces for Storage Awareness™ (VASA) interfaces.

3. The method of claim 1, wherein the virtual system
includes a VMware® ESX Server™, a VMware® Virtual
Center™ server, and a set of virtual machines.

4. The method of claim 1, wherein the type of the data
storage system includes a block based data storage system, a
file based data storage system, and a file and block based data
storage system.

5. The method of claim 1, wherein the information includes
storage system information regarding storage objects of the
data storage system.

6. The method of claim 5, wherein a storage object of the
storage objects is selected from the group consisting of a
Logical Unit Number (LUN), a file, a storage array and a port.

7. The method of claim 1, wherein the universal framework
module provides information to a VMware® Virtual Cen-
ter™ server.

8. The method of claim 1, wherein the first set of interfaces
includes platform independent functions for managing a ses-
sion established between the virtual system and the data stor-
age system.

9. The method of claim 1, wherein the second set of inter-
faces include functions for collecting system events, posting
the system events, and executing queries for retrieving stor-
age system information from the data storage system.

10. The method of claim 1, wherein the universal frame-
work module and the platform specific module are dynami-
cally loadable libraries.

11. The method of claim 1, wherein the universal frame-
work module and the platform specific module execute on the
data storage system.

12. A system for use in managing data storage in virtual
systems, the system comprising:

first logic querying a data storage system by a virtual sys-

tem, through a universal framework module of the data
storage system, wherein the universal framework mod-

US 9,081,594 B1

27

ule includes a first set of interfaces associated with a
format used by the virtual system to communicate with
the data storage system, wherein the first set of interfaces
are used to provide information to the virtual system
independent of a type of the data storage system,
wherein the universal framework module is in commu-
nication with a set of platform specific modules, each
platform specific module providing functionality spe-
cific to a type of a data storage system, wherein the
universal framework module includes a set of function-
ality common to different types of data storage systems,
wherein the first set of interfaces included in the univer-
sal framework module translates information received
from a set of platform specific modules to the informa-
tion provided to the virtual system; and

second logic retrieving from a platform specific module of
the set of platform specific modules information associ-
ated with the data storage, wherein the platform specific
module is associated with the data storage system and
provides the information to the universal framework
module, wherein the platform specific module includes
a second set of interfaces based on the type of the data
storage system, wherein the platform specific module
translates the information associated with the data stor-
age system retrieved from the data storage system based
on the second set of interfaces to the information pro-
vided to the universal framework module based on the
first set of interfaces.

15

20

28

13. The system of claim 12, wherein the first set of inter-
faces is based on VMware® Virtual Sphere Application pro-
gramming Interfaces for Storage Awareness™ (VASA) inter-
faces.

14. The system of claim 12, wherein the virtual system
includes a VMware® ESX Server™, a VMware® Virtual
Center™ server, and a set of virtual machines.

15. The system of claim 12, wherein the type of the data
storage system includes a block based data storage system, a
file based data storage system, and a file and block based data
storage system.

16. The system of claim 12, wherein the information
includes storage system information regarding storage
objects of the data storage system.

17. The system of claim 16, wherein a storage object of the
storage objects is selected from the group consisting of a
Logical Unit Number (LUN), a file, a storage array and a port.

18. The system of claim 12, wherein the universal frame-
work module provides information to a VMware® Virtual
Center™ server.

19. The system of claim 12, wherein the first set of inter-
faces includes platform independent functions for managing
a session established between the virtual system and the data
storage system.

20. The system of claim 12, wherein the second set of
interfaces include functions for collecting system events,
posting the system events, and executing queries for retriev-
ing storage system information from the data storage system.

#* #* #* #* #*

